Current Nutrition Reports

, Volume 3, Issue 2, pp 149–161 | Cite as

Deconstructing the Paleolithic Diet: Components that Reduce Cardiovascular Disease Risk

  • Christopher P. F. Marinangeli
  • Peter J. H. JonesEmail author
Cardiovascular Disease (JH Goedecke, Section Editor)


Studies demonstrate that a Paleolithic-type diet reduces risk for cardiovascular disease (CVD). Deconstruction of the Paleolithic diet shows that ancestral hominids followed a dietary pattern that consisted of raw-whole foods containing efficacious levels of mono- and polyunsaturated fatty acids, long-chain omega-3 fatty acids, dietary fibre, phytosterols, protein, and potassium. While Paleolithic diets provided modest levels of carbohydrate-derived energy, these diets also were low in sodium. Therefore, the objective of this review is to identify the attributes of ancestral diets that reduce risk factors for CVD. These risk factors include dyslipidemia, elevated blood pressure, diabetes/hyperglycaemia, and excess body weight/obesity. Overall, data suggest that the Paleolithic diet is a dietary paradigm, which contains bioactive components that modulate biological processes and decrease CVD risk in modern-day humans.


Paleolithic diet Ancestral diet Cardiovascular disease Diabetes Glycemia Diabetes Dyslipidemia Blood pressure Omega-3 Phytosterols Low-carbohydrate diet 


Compliance with Ethics Guidelines

Conflict of Interest

Christopher P.F. Marinangeli and Peter J.H Jones declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Cordain L, Eaton SB, Miller JB, Mann N, Hill K. The paradoxical nature of hunter-gatherer diets: meat-based, yet non-atherogenic. Eur J Clin Nutr. 2002;56 Suppl 1:S42–52. doi: 10.1038/sj.ejcn.1601353.PubMedGoogle Scholar
  2. 2.••
    Smith Jr SC, Chen D, Collins A, Harold JG, Jessup M, Josephson S, et al. Moving from political declaration to action on reducing the global burden of cardiovascular diseases: a statement from the global cardiovascular disease taskforce. J Am Coll Cardiol. 2013;62(22):2151–3. doi: 10.1016/j.jacc.2013.08.722. This article outlines global targets for reducing the global burden of cardiovascular disease.PubMedGoogle Scholar
  3. 3.
    World Health Organization. Cardiovascular diseases (CVDs): Fact sheet N°317. World Health Organization, Geneva. 2013. Accessed 3 Dec 2013.
  4. 4.
    Statistics Canada. Leading Causes of Death in Canada, 2009. Ottawa 2012.Google Scholar
  5. 5.
    Eyre H, Kahn R, Robertson RM, Clark NG, Doyle C, Hong Y, et al. Preventing cancer, cardiovascular disease, and diabetes: a common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. Circulation. 2004;109(25):3244–55. doi: 10.1161/01.CIR.0000133321.00456.00.PubMedGoogle Scholar
  6. 6.
    Yusuf S, Reddy S, Ounpuu S, Anand S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104(22):2746–53.PubMedGoogle Scholar
  7. 7.
    Brown A, Reynolds LR, Bruemmer D. Intensive glycemic control and cardiovascular disease: an update. Nat Rev Cardiol. 2010;7(7):369–75. doi: 10.1038/nrcardio.2010.35.PubMedGoogle Scholar
  8. 8.
    Smith Jr SC, Collins A, Ferrari R, Holmes Jr DR, Logstrup S, McGhie DV, et al. Our time: a call to save preventable death from cardiovascular disease (heart disease and stroke). J Am Coll Cardiol. 2012;60(22):2343–8. doi: 10.1016/j.jacc.2012.08.962.PubMedGoogle Scholar
  9. 9.
    Eaton SB, Konner M. A consideration of its nature and current implications. N Engl J Med. 1985;312(5):283–9. doi: 10.1056/nejm198501313120505.PubMedGoogle Scholar
  10. 10.
    Eaton SB, Eaton 3rd SB, Konner MJ. Paleolithic nutrition revisited: a twelve-year retrospective on its nature and implications. Eur J Clin Nutr. 1997;51(4):207–16.PubMedGoogle Scholar
  11. 11.
    Cordain L, Miller JB, Eaton SB, Mann N, Holt SH, Speth JD. Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. Am J Clin Nutr. 2000;71(3):682–92.PubMedGoogle Scholar
  12. 12.
    Konner M, Eaton SB. Paleolithic nutrition: twenty-five years later. Nutr Clin Pract Off Publ Am Soc Parenter Enter Nutr. 2010;25(6):594–602. doi: 10.1177/0884533610385702.Google Scholar
  13. 13.
    Eaton SB. The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition? Proc Nutr Soc. 2006;65(1):1–6.PubMedGoogle Scholar
  14. 14.
    Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AI, et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature. 2007;449(7164):905–8. doi: 10.1038/nature06204.PubMedGoogle Scholar
  15. 15.
    Lindeberg S, Jonsson T, Granfeldt Y, Borgstrand E, Soffman J, Sjostrom K, et al. A Palaeolithic diet improves glucose tolerance more than a Mediterranean-like diet in individuals with ischaemic heart disease. Diabetologia. 2007;50(9):1795–807. doi: 10.1007/s00125-007-0716-y.PubMedGoogle Scholar
  16. 16.
    Jonsson T, Granfeldt Y, Ahren B, Branell UC, Palsson G, Hansson A, et al. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: a randomized cross-over pilot study. Cardiovasc Diabetol. 2009;8:35. doi: 10.1186/1475-2840-8-35.PubMedCentralPubMedGoogle Scholar
  17. 17.•
    Ryberg M, Sandberg S, Mellberg C, Stegle O, Lindahl B, Larsson C, et al. A Palaeolithic-type diet causes strong tissue-specific effects on ectopic fat deposition in obese postmenopausal women. J Intern Med. 2013;274(1):67–76. doi: 10.1111/joim.12048. This recent study outlines the effects of the Palaeolithic diet on risk factors for cardiovascular disease. This study also examines the effects of a Palaeolithic diet on ectopic fat deposition.PubMedGoogle Scholar
  18. 18.
    Osterdahl M, Kocturk T, Koochek A, Wandell PE. Effects of a short-term intervention with a paleolithic diet in healthy volunteers. Eur J Clin Nutr. 2008;62(5):682–5. doi: 10.1038/sj.ejcn.1602790.PubMedGoogle Scholar
  19. 19.
    Frassetto LA, Schloetter M, Mietus-Synder M, Morris Jr RC, Sebastian A. Metabolic and physiologic improvements from consuming a paleolithic, hunter-gatherer type diet. Eur J Clin Nutr. 2009;63(8):947–55. doi: 10.1038/ejcn.2009.4.PubMedGoogle Scholar
  20. 20.•
    Flock MR, Kris-Etherton PM. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2013;16(2):133–40. doi: 10.1097/MCO.0b013e328359e6ac. This comprehensive review summarizes saturated fatty acid metabolism as well as the effects of saturated fatty acids on circulating lipoprotein cholesterol levels.PubMedGoogle Scholar
  21. 21.
    Kuipers RS, Luxwolda MF, Dijck-Brouwer DA, Eaton SB, Crawford MA, Cordain L, et al. Estimated macronutrient and fatty acid intakes from an East African Palaeolithic diet. Br J Nutr. 2010;104(11):1666–87. doi: 10.1017/s0007114510002679.PubMedGoogle Scholar
  22. 22.••
    Micha R, Michas G, Mozaffarian D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes–an updated review of the evidence. Curr Atheroscler Rep. 2012;14(6):515–24. doi: 10.1007/s11883-012-0282-8. This meta-analysis demonstrates that unprocessed red meats do not increase risk for coronary artery disease.PubMedCentralPubMedGoogle Scholar
  23. 23.
    Ros E, Mataix J. Fatty acid composition of nuts–implications for cardiovascular health. Br J Nutr. 2006;96 Suppl 2:S29–35.PubMedGoogle Scholar
  24. 24.
    Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54.PubMedGoogle Scholar
  25. 25.
    Hoffman LC, Wiklund E. Game and venison - meat for the modern consumer. Meat Sci. 2006;74(1):197–208. doi: 10.1016/j.meatsci.2006.04.005.PubMedGoogle Scholar
  26. 26.
    Labonte ME, Jenkins DJ, Lewis GF, Chiavaroli L, Wong JM, Kendall CW, et al. Adding MUFA to a dietary portfolio of cholesterol-lowering foods reduces apoAI fractional catabolic rate in subjects with dyslipidaemia. Br J Nutr. 2013;110(3):426–36. doi: 10.1017/S000711451200534X.PubMedGoogle Scholar
  27. 27.
    Schwingshackl L, Hoffmann G. Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients. 2012;4(12):1989–2007. doi: 10.3390/nu4121989.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy Jr WS, et al. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol. 2012;176 Suppl 7:S44–54. doi: 10.1093/aje/kws264.PubMedCentralPubMedGoogle Scholar
  29. 29.
    Davidson MH. Mechanisms for the hypotriglyceridemic effect of marine omega-3 fatty acids. Am J Cardiol. 2006;98(4A):27i–33.PubMedGoogle Scholar
  30. 30.
    Skulas-Ray AC, Kris-Etherton PM, Harris WS, Vanden Heuvel JP, Wagner PR, West SG. Dose-response effects of omega-3 fatty acids on triglycerides, inflammation, and endothelial function in healthy persons with moderate hypertriglyceridemia. Am J Clin Nutr. 2011;93(2):243–52. doi: 10.3945/ajcn.110.003871.PubMedCentralPubMedGoogle Scholar
  31. 31.
    Harris WS. n-3 fatty acids and serum lipoproteins: human studies. Am J Clin Nutr. 1997;65(5 Suppl):1645S–54.PubMedGoogle Scholar
  32. 32.
    Musa-Veloso K, Binns MA, Kocenas AC, Poon T, Elliot JA, Rice H, et al. Long-chain omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid dose-dependently reduce fasting serum triglycerides. Nutr Rev. 2010;68(3):155–67. doi: 10.1111/j.1753-4887.2010.00272.x.PubMedGoogle Scholar
  33. 33.
    Naughton JM, O'Dea K, Sinclair AJ. Animal foods in traditional Australian aboriginal diets: polyunsaturated and low in fat. Lipids. 1986;21(11):684–90.PubMedGoogle Scholar
  34. 34.
    Eaton SB, Eaton 3rd SB, Sinclair AJ, Cordain L, Mann NJ. Dietary intake of long-chain polyunsaturated fatty acids during the paleolithic. World Rev Nutr Diet. 1998;83:12–23.PubMedGoogle Scholar
  35. 35.
    Dyerberg J, Bang HO, Hjorne N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am J Clin Nutr. 1975;28(9):958–66.PubMedGoogle Scholar
  36. 36.
    Bang HO, Dyerberg J, Nielsen AB. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet. 1971;1(7710):1143–5.PubMedGoogle Scholar
  37. 37.
    Simopoulos AP. Omega-3 fatty acids and cardiovascular disease: the epidemiological evidence. Environ Health Prev Med. 2002;6(4):203–9. doi: 10.1007/BF02897971.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008;233(6):674–88. doi: 10.3181/0711-MR-311.Google Scholar
  39. 39.
    Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: a systematic review. Atherosclerosis. 2006;189(1):19–30. doi: 10.1016/j.atherosclerosis.2006.02.012.PubMedGoogle Scholar
  40. 40.
    Arterburn LM, Hall EB, Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr. 2006;83(6 Suppl):1467S–76.PubMedGoogle Scholar
  41. 41.
    Wang C, Harris WS, Chung M, Lichtenstein AH, Balk EM, Kupelnick B, et al. n-3 Fatty acids from fish or fish-oil supplements, but not alpha-linolenic acid, benefit cardiovascular disease outcomes in primary- and secondary-prevention studies: a systematic review. Am J Clin Nutr. 2006;84(1):5–17.PubMedGoogle Scholar
  42. 42.
    Lavie CJ, Milani RV, Mehra MR, Ventura HO. Omega-3 polyunsaturated fatty acids and cardiovascular diseases. J Am Coll Cardiol. 2009;54(7):585–94. doi: 10.1016/j.jacc.2009.02.084.PubMedGoogle Scholar
  43. 43.
    Talati R, Baker WL, Pabilonia MS, White CM, Coleman CI. The effects of barley-derived soluble fiber on serum lipids. Ann Fam Med. 2009;7(2):157–63. doi: 10.1370/afm.917.PubMedCentralPubMedGoogle Scholar
  44. 44.
    AbuMweis SS, Jew S, Ames NP. beta-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 2010;64(10.1038/ejcn.2010.178):1472–80.PubMedGoogle Scholar
  45. 45.
    Tiwari U, Cummins E. Meta-analysis of the effect of beta-glucan intake on blood cholesterol and glucose levels. Nutrition. 2011;27(10):1008–16. doi: 10.1016/j.nut.2010.11.006.PubMedGoogle Scholar
  46. 46.
    Anderson JW, Allgood LD, Lawrence A, Altringer LA, Jerdack GR, Hengehold DA, et al. Cholesterol-lowering effects of psyllium intake adjunctive to diet therapy in men and women with hypercholesterolemia: meta-analysis of 8 controlled trials. Am J Clin Nutr. 2000;71(2):472–9.PubMedGoogle Scholar
  47. 47.
    Wei ZH, Wang H, Chen XY, Wang BS, Rong ZX, Wang BS, et al. Time- and dose-dependent effect of psyllium on serum lipids in mild-to-moderate hypercholesterolemia: a meta-analysis of controlled clinical trials. Eur J Clin Nutr. 2009;63(7):821–7. doi: 10.1038/ejcn.2008.49.PubMedGoogle Scholar
  48. 48.
    Brouns F, Theuwissen E, Adam A, Bell M, Berger A, Mensink RP. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr. 2012;66(5):591–9. doi: 10.1038/ejcn.2011.208.PubMedGoogle Scholar
  49. 49.
    Vuksan V, Jenkins AL, Rogovik AL, Fairgrieve CD, Jovanovski E, Leiter LA. Viscosity rather than quantity of dietary fibre predicts cholesterol-lowering effect in healthy individuals. Br J Nutr. 2011;106(9):1349–52. doi: 10.1017/S0007114511001711.PubMedGoogle Scholar
  50. 50.
    Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010;1(2):149–55. doi: 10.1039/c0fo00080a.PubMedGoogle Scholar
  51. 51.
    The Institute of Medicine. Chapter 7 - Dietary, functional, and total fiber. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (Macronutrients). Washington, DC: National Academy of Sciences; 2005. p. 339–421.Google Scholar
  52. 52.
    Margareta E, Nyman GL. Importance of processing for physico-chemical and physiological properties of dietary fibre. Proc Nutr Soc. 2003;62(1):187–92. doi: 10.1079/pns2002227.Google Scholar
  53. 53.
    Svanberg SJM, Gustafsson KBH, Suortti T, Margareta E, Nyman GL. Molecular-weight distribution, measured by HPSEC, and viscosity of water-soluble dietary fiber in carrots following different types of processing. J Agric Food Chem. 1995;43(10):2692–7. doi: 10.1021/jf00058a026.Google Scholar
  54. 54.
    Nyman E, Svanberg SJM, Asp NGL. Molecular-weight distribution and viscosity of water-soluble dietary fiber isolated from green beans, brussel-sprouts and green peas following different types of processing. J Sci Food Agric. 1994;66(1):83–91. doi: 10.1002/jsfa.2740660113.Google Scholar
  55. 55.
    Guillon F, Champ M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int. 2000;33(3–4):233–45. doi: 10.1016/s0963-9969(00)00038-7.Google Scholar
  56. 56.
    Tosh SM, Yada S. Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Res Int. 2010;43(2):450–60. doi: 10.1016/j.foodres.2009.09.005.Google Scholar
  57. 57.
    Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R, et al. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc. 2003;78(8):965–78. doi: 10.4065/78.8.965.PubMedGoogle Scholar
  58. 58.
    Abumweis SS, Barake R, Jones PJ. Plant sterols/stanols as cholesterol lowering agents: a meta-analysis of randomized controlled trials. Food Nutr Res. 2008;52. doi: 10.3402/fnr.v52i0.1811.
  59. 59.
    Demonty I, Ras RT, van der Knaap HC, Duchateau GS, Meijer L, Zock PL, et al. Continuous dose-response relationship of the LDL-cholesterol-lowering effect of phytosterol intake. J Nutr. 2009;139(2):271–84. doi: 10.3945/jn.108.095125.PubMedGoogle Scholar
  60. 60.
    Carr TP, Ash MM, Brown AW. Cholesterol-lowering phytosterols: factors affecting their use and efficacy. Nutr Diet Suppl. 2010;2:59–72.Google Scholar
  61. 61.
    Santosa S, Varady KA, AbuMweis S, Jones PJ. Physiological and therapeutic factors affecting cholesterol metabolism: does a reciprocal relationship between cholesterol absorption and synthesis really exist? Life Sci. 2007;80(6):505–14. doi: 10.1016/j.lfs.2006.10.006.PubMedGoogle Scholar
  62. 62.
    Phillips KM, Ruggio DM, Ashraf-Khorassani M. Phytosterol composition of nuts and seeds commonly consumed in the United States. J Agric Food Chem. 2005;53(24):9436–45. doi: 10.1021/jf051505h.PubMedGoogle Scholar
  63. 63.
    Ryan E, Galvin K, O'Connor TP, Maguire AR, O'Brien NM. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods Hum Nutr. 2007;62(3):85–91. doi: 10.1007/s11130-007-0046-8.PubMedGoogle Scholar
  64. 64.
    Webster JL, Dunford EK, Hawkes C, Neal BC. Salt reduction initiatives around the world. J Hypertens. 2011;29(6):1043–50. doi: 10.1097/HJH.0b013e328345ed83.PubMedGoogle Scholar
  65. 65.
    He FJ, MacGregor GA. A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J Hum Hypertens. 2009;23(6):363–84. doi: 10.1038/jhh.2008.144.PubMedGoogle Scholar
  66. 66.
    Cogswell ME, Zhang Z, Carriquiry AL, Gunn JP, Kuklina EV, Saydah SH, et al. Sodium and potassium intakes among US adults: NHANES 2003-2008. Am J Clin Nutr. 2012;96(3):647–57. doi: 10.3945/ajcn.112.034413.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356(19):1966–78. doi: 10.1056/NEJMra064486.PubMedGoogle Scholar
  68. 68.•
    Koliaki C, Katsilambros N. Dietary sodium, potassium, and alcohol: key players in the pathophysiology, prevention, and treatment of human hypertension. Nutr Rev. 2013;71(6):402–11. doi: 10.1111/nure.12036. This comprehensive review summarizes the mechanisms by which high sodium/low potassium diets cause hypertension.PubMedGoogle Scholar
  69. 69.
    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10. doi: 10.1056/NEJM200101043440101.PubMedGoogle Scholar
  70. 70.
    Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials. J Hypertens. 2002;20(8):1493–9.PubMedGoogle Scholar
  71. 71.
    Campbell F, Dickinson HO, Critchley JA, Ford GA, Bradburn M. A systematic review of fish-oil supplements for the prevention and treatment of hypertension. Eur J Prev Cardiol. 2013;20(1):107–20. doi: 10.1177/2047487312437056.PubMedGoogle Scholar
  72. 72.
    Pase MP, Grima NA, Sarris J. Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br J Nutr. 2011;106(7):974–80. doi: 10.1017/S0007114511002819.PubMedGoogle Scholar
  73. 73.
    Xin W, Wei W, Li X. Effect of fish oil supplementation on fasting vascular endothelial function in humans: a meta-analysis of randomized controlled trials. PLoS One. 2012;7(9):e46028. doi: 10.1371/journal.pone.0046028.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Cicero AF, Ertek S, Borghi C. Omega-3 polyunsaturated fatty acids: their potential role in blood pressure prevention and management. Curr Vasc Pharmacol. 2009;7(3):330–7.PubMedGoogle Scholar
  75. 75.•
    Ulu A, Harris TR, Morisseau C, Miyabe C, Inoue H, Schuster G, et al. Anti-inflammatory effects of omega-3 polyunsaturated fatty acids and soluble epoxide hydrolase inhibitors in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol. 2013;62(3):285–97. doi: 10.1097/FJC.0b013e318298e460. This article presents preclinical data that helps to delineate the mechanisms by which long-chain omega-3 fatty acids lower blood pressure.PubMedGoogle Scholar
  76. 76.
    Cavalot F, Petrelli A, Traversa M, Bonomo K, Fiora E, Conti M, et al. Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: lessons from the San Luigi Gonzaga Diabetes Study. J Clin Endocrinol Metab. 2006;91(3):813–9. doi: 10.1210/jc.2005-1005.PubMedGoogle Scholar
  77. 77.
    Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol. 2010;45(3):199–214. doi: 10.3109/10409231003667500.PubMedCentralPubMedGoogle Scholar
  78. 78.
    Peter R, Okoseime OE, Rees A, Owens DR. Postprandial glucose - a potential therapeutic target to reduce cardiovascular mortality. Curr Vasc Pharmacol. 2009;7(1):68–74.PubMedGoogle Scholar
  79. 79.
    Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med. 2006;41(2):177–84. doi: 10.1016/j.freeradbiomed.2005.04.030.PubMedGoogle Scholar
  80. 80.
    Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem Med. 2013;23(3):266–80.Google Scholar
  81. 81.
    Jenkins DJ, Kendall CW, Banach MS, Srichaikul K, Vidgen E, Mitchell S, et al. Nuts as a replacement for carbohydrates in the diabetic diet. Diabetes Care. 2011;34(8):1706–11. doi: 10.2337/dc11-0338.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Jenkins DJ, Thorne MJ, Camelon K, Jenkins A, Rao AV, Taylor RH, et al. Effect of processing on digestibility and the blood glucose response: a study of lentils. Am J Clin Nutr. 1982;36(6):1093–101.PubMedGoogle Scholar
  83. 83.
    Jenkins DJ, Wolever TM, Jenkins AL, Thorne MJ, Lee R, Kalmusky J, et al. The glycaemic index of foods tested in diabetic patients: a new basis for carbohydrate exchange favouring the use of legumes. Diabetologia. 1983;24(4):257–64.PubMedGoogle Scholar
  84. 84.
    Kendall CW, Esfahani A, Josse AR, Augustin LS, Vidgen E, Jenkins DJ. The glycemic effect of nut-enriched meals in healthy and diabetic subjects. Nutr Metab Cardiovasc Dis: NMCD. 2011;21 Suppl 1:S34–9. doi: 10.1016/j.numecd.2011.03.013.PubMedGoogle Scholar
  85. 85.
    Granfeldt Y, Hagander B, Bjorck I. Metabolic responses to starch in oat and wheat products. On the importance of food structure, incomplete gelatinization or presence of viscous dietary fibre. Eur J Clin Nutr. 1995;49(3):189–99.PubMedGoogle Scholar
  86. 86.
    Jarvi AE, Karlstrom BE, Granfeldt YE, Bjorck IM, Vessby BO, Asp NG. The influence of food structure on postprandial metabolism in patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr. 1995;61(4):837–42.PubMedGoogle Scholar
  87. 87.
    Buyken AE, Mitchell P, Ceriello A, Brand-Miller J. Optimal dietary approaches for prevention of type 2 diabetes: a life-course perspective. Diabetologia. 2010;53(3):406–18. doi: 10.1007/s00125-009-1629-8.PubMedGoogle Scholar
  88. 88.••
    Sievenpiper JL, Chiavaroli L, de Souza RJ, Mirrahimi A, Cozma AI, Ha V, et al. 'Catalytic' doses of fructose may benefit glycaemic control without harming cardiometabolic risk factors: a small meta-analysis of randomised controlled feeding trials. Br J Nutr. 2012;108(3):418–23. doi: 10.1017/S000711451200013X. This article provides meta-analytic data showing that modest consumption of fructose does not increase the risk for cardiovascular disease and may help facilitate glycaemic control.PubMedCentralPubMedGoogle Scholar
  89. 89.
    Jonsson T, Granfeldt Y, Erlanson-Albertsson C, Ahren B, Lindeberg S. A paleolithic diet is more satiating per calorie than a mediterranean-like diet in individuals with ischemic heart disease. Nutr Metab. 2010;7:85. doi: 10.1186/1743-7075-7-85.Google Scholar
  90. 90.
    Jonsson T, Granfeldt Y, Lindeberg S, Hallberg AC. Subjective satiety and other experiences of a Paleolithic diet compared to a diabetes diet in patients with type 2 diabetes. Nutr J. 2013;12:105. doi: 10.1186/1475-2891-12-105.PubMedCentralPubMedGoogle Scholar
  91. 91.
    Brennan IM, Luscombe-Marsh ND, Seimon RV, Otto B, Horowitz M, Wishart JM, et al. Effects of fat, protein, and carbohydrate and protein load on appetite, plasma cholecystokinin, peptide YY, and ghrelin, and energy intake in lean and obese men. Am J Physiol Gastrointest Liver Physiol. 2012;303(1):G129–40. doi: 10.1152/ajpgi.00478.2011.PubMedGoogle Scholar
  92. 92.
    Chambers AP, Sandoval DA, Seeley RJ. Integration of satiety signals by the central nervous system. Curr Bio: CB. 2013;23(9):R379–88. doi: 10.1016/j.cub.2013.03.020.Google Scholar
  93. 93.
    Geliebter A. Neuroimaging of gastric distension and gastric bypass surgery. Appetite. 2013;71:459–65. doi: 10.1016/j.appet.2013.07.002.PubMedGoogle Scholar
  94. 94.
    Iwasaki Y, Yada T. Vagal afferents sense meal-associated gastrointestinal and pancreatic hormones: mechanism and physiological role. Neuropeptides. 2012;46(6):291–7. doi: 10.1016/j.npep.2012.08.009.PubMedGoogle Scholar
  95. 95.
    Thabuis C, Tissot-Favre D, Bezelgues JB, Martin JC, Cruz-Hernandez C, Dionisi F, et al. Biological functions and metabolism of oleoylethanolamide. Lipids. 2008;43(10):887–94. doi: 10.1007/s11745-008-3217-y.PubMedGoogle Scholar
  96. 96.
    Sarro-Ramirez A, Sanchez-Lopez D, Tejeda-Padron A, Frias C, Zaldivar-Rae J, Murillo-Rodriguez E. Brain molecules and appetite: the case of oleoylethanolamide. Cent Nerv Syst Agents Med Chem. 2013;13(1):88–91.PubMedGoogle Scholar
  97. 97.
    Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D. Regulation of food intake by oleoylethanolamide. Cell Mol Life Sci: CMLS. 2005;62(6):708–16. doi: 10.1007/s00018-004-4494-0.PubMedGoogle Scholar
  98. 98.
    Lin L, Rideout T, Yurkova N, Yang H, Eck P, Jones PJ. Fatty acid ethanolamides modulate CD36-mRNA through dietary fatty acid manipulation in Syrian Golden hamsters. Appl Physiol Nutr Metab. 2013;38(8):870–8.PubMedGoogle Scholar
  99. 99.
    Livesey G. Energy values of unavailable carbohydrate and diets: an inquiry and analysis. Am J Clin Nutr. 1990;51(4):617–37.PubMedGoogle Scholar
  100. 100.
    de Castro JM. Dietary energy density is associated with increased intake in free-living humans. J Nutr. 2004;134(2):335–41.PubMedGoogle Scholar
  101. 101.
    Ledikwe JH, Blanck HM, Kettel Khan L, Serdula MK, Seymour JD, Tohill BC, et al. Dietary energy density is associated with energy intake and weight status in US adults. Am J Clin Nutr. 2006;83(6):1362–8.PubMedGoogle Scholar
  102. 102.
    Duncan KH, Bacon JA, Weinsier RL. The effects of high and low energy density diets on satiety, energy intake, and eating time of obese and nonobese subjects. Am J Clin Nutr. 1983;37(5):763–7.PubMedGoogle Scholar
  103. 103.
    Smit HJ, Kemsley EK, Tapp HS, Henry CJ. Does prolonged chewing reduce food intake? Fletcherism revisited. Appetite. 2011;57(1):295–8. doi: 10.1016/j.appet.2011.02.003.PubMedGoogle Scholar
  104. 104.
    Kristensen M, Jensen MG. Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite. 2011;56(1):65–70. doi: 10.1016/j.appet.2010.11.147.PubMedGoogle Scholar
  105. 105.
    Miles CW, Kelsay JL, Wong NP. Effect of dietary fiber on the metabolizable energy of human diets. J Nutr. 1988;118(9):1075–81.PubMedGoogle Scholar
  106. 106.
    Grant G, Alonso R, Edwards JE, Murray S. Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old hooded-lister rats but only soya beans induce growth of the pancreas. Pancreas. 2000;20(3):305–12.PubMedGoogle Scholar
  107. 107.
    Herzig KH, Bardocz S, Grant G, Nustede R, Folsch UR, Pusztai A. Red kidney bean lectin is a potent cholecystokinin releasing stimulus in the rat inducing pancreatic growth. Gut. 1997;41(3):333–8.PubMedCentralPubMedGoogle Scholar
  108. 108.
    Bonjour JP, Kraenzlin M, Levasseur R, Warren M, Whiting S. Dairy in adulthood: from foods to nutrient interactions on bone and skeletal muscle health. J Am Coll Nutr. 2013;32(4):251–63. doi: 10.1080/07315724.2013.816604.PubMedCentralPubMedGoogle Scholar
  109. 109.
    Vatanparast H, Calvo MS, Green TJ, Whiting SJ. Despite mandatory fortification of staple foods, vitamin D intakes of Canadian children and adults are inadequate. J Steroid Biochem Mol Biol. 2010;121(1–2):301–3. doi: 10.1016/j.jsbmb.2010.03.079.PubMedGoogle Scholar
  110. 110.
    Cho SS, Qi L, Fahey Jr GC, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr. 2013;98(2):594–619. doi: 10.3945/ajcn.113.067629.PubMedGoogle Scholar
  111. 111.
    He M, van Dam RM, Rimm E, Hu FB, Qi L. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation. 2010;121(20):2162–8. doi: 10.1161/CIRCULATIONAHA.109.907360.PubMedCentralPubMedGoogle Scholar
  112. 112.
    O'Keefe Jr JH, Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004;79(1):101–8. doi: 10.4065/79.1.101.PubMedGoogle Scholar
  113. 113.
    Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA, et al. Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet. 2004;74(6):1111–20. doi: 10.1086/421051.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Metzgar M, Rideout TC, Fontes-Villalba M, Kuipers RS. The feasibility of a Paleolithic diet for low-income consumers. Nutr Res (New York, NY). 2011;31(6):444–51. doi: 10.1016/j.nutres.2011.05.008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Christopher P. F. Marinangeli
    • 1
  • Peter J. H. Jones
    • 1
    Email author
  1. 1.Richardson Centre for Functional Foods and NutraceuticalsUniversity of ManitobaWinnipegCanada

Personalised recommendations