Skip to main content
Log in

Challenges in Grading the Severity of Right Ventricular Dysfunction via Point-of-Care Echocardiography

  • REVIEW
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses the current limitations of assessing the right ventricle (RV) using Point-of-Care Ultrasound, explains the challenges in describing the complexity of the RV, and provides guidance on how to use Point-of-Care Ultrasound data in clinical practice.

Recent Findings

Assessing the RV requires assessments from multiple views and parameters due to its complex shape. Combined use of multiple ultrasound-derived measures along with clinical information from other sources is recommended. Artificial intelligence is increasingly used in Point-of-Care Ultrasound and will help improve validity and consistency of measurements. Future studies are needed to examine the impact of the Point-of-Care Ultrasound exam on clinical outcomes.

Summary

Multiple challenges exist in RV assessment. Future studies and guidance are required to investigate the feasibility of Point-of-Care Ultrasound in specific clinical settings, training and credentialing of examiners, and practice guidance on parameters to be used and reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grignola JC, Domingo E. Acute right ventricular dysfunction in intensive care unit. Biomed Res Int. 2017;2017:8217105. https://doi.org/10.1155/2017/8217105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang H, Huang W, Zhang Q, Chen X, Wang X, Liu D, et al. Prevalence and prognostic value of various types of right ventricular dysfunction in mechanically ventilated septic patients. Ann Intensive Care. 2021;11(1):108. https://doi.org/10.1186/s13613-021-00902-9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vallabhajosyula S, Shankar A, Vojjini R, Cheungpasitporn W, Sundaragiri PR, DuBrock HM, et al. Impact of right ventricular dysfunction on short-term and long-term mortality in sepsis: a meta-analysis of 1,373 patients. Chest. 2021;159(6):2254–63. https://doi.org/10.1016/j.chest.2020.12.016.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chotalia M, Ali M, Alderman JE, Kalla M, Parekh D, Bangash MN, et al. Right ventricular dysfunction and its association with mortality in coronavirus disease 2019 acute respiratory distress syndrome. Crit Care Med. 2021;49(10):1757–68. https://doi.org/10.1097/CCM.0000000000005167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coutance G, Cauderlier E, Ehtisham J, Hamon M, Hamon M. The prognostic value of markers of right ventricular dysfunction in pulmonary embolism: a meta-analysis. Crit Care. 2011;15(2):R103. https://doi.org/10.1186/cc10119.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Santas E, De la Espriella R, Chorro FJ, Palau P, Minana G, Heredia R, et al. Right ventricular dysfunction staging system for mortality risk stratification in heart failure with preserved ejection fraction. J Clin Med. 2020 Mar 18;9(3):831. https://doi.org/10.3390/jcm9030831.

  7. • Braunwald E. Pathophysiology of heart failure. Heart disease: a textbook of cardiovascular medicine. Philadelphia: Saunders; 1980. Excellent resource to study basic cardiac physiology.

    Google Scholar 

  8. Naeije R, Manes A. The right ventricle in pulmonary arterial hypertension. Eur Respir Rev. 2014;23(134):476–87. https://doi.org/10.1183/09059180.00007414.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, et al. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med. 2018;198(4):e15–43. https://doi.org/10.1164/rccm.201806-1160ST.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. https://doi.org/10.1161/CIRCULATIONAHA.107.653576.

    Article  PubMed  Google Scholar 

  11. Kovacs A, Lakatos B, Tokodi M, Merkely B. Right ventricular mechanical pattern in health and disease: beyond longitudinal shortening. Heart Fail Rev. 2019;24(4):511–20. https://doi.org/10.1007/s10741-019-09778-1.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Addetia K, Muraru D, Badano LP, Lang RM. New directions in right ventricular assessment using 3-dimensional echocardiography. JAMA Cardiol. 2019;4(9):936–44. https://doi.org/10.1001/jamacardio.2019.2424.

    Article  PubMed  Google Scholar 

  13. Kind T, Mauritz GJ, Marcus JT, van de Veerdonk M, Westerhof N, Vonk-Noordegraaf A. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson. 2010;12(1):35. https://doi.org/10.1186/1532-429X-12-35.

    Article  PubMed  PubMed Central  Google Scholar 

  14. • Surkova E, Kovacs A, Tokodi M, Lakatos BK, Merkely B, Muraru D, et al. Contraction patterns of the right ventricle associated with different degrees of left ventricular systolic dysfunction. Circ Cardiovasc Imaging. 2021;14(10):e012774. https://doi.org/10.1161/CIRCIMAGING.121.012774. Describes changes in RV contraction with decreasing LV function.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lakatos B, Toser Z, Tokodi M, Doronina A, Kosztin A, Muraru D, et al. Quantification of the relative contribution of the different right ventricular wall motion components to right ventricular ejection fraction: the ReVISION method. Cardiovasc Ultrasound. 2017;15(1):8. https://doi.org/10.1186/s12947-017-0100-0.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J. 2019;54(3):1901647. https://doi.org/10.1183/13993003.01647-2019.

    Article  PubMed  Google Scholar 

  17. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713; quiz 86–8. https://doi.org/10.1016/j.echo.2010.05.010.

    Article  PubMed  Google Scholar 

  18. •• Prada G, Pustavoitau A, Koenig S, Mitchell C, Stainback RF, Diaz-Gomez JL. Focused cardiac ultrasonography for right ventricular size and systolic function. N Engl J Med. 2022;387(21):e52. https://doi.org/10.1056/NEJMvcm2004089. Recent article providing guidance on RV assessment using Point-of-care Ultrasound.

    Article  PubMed  Google Scholar 

  19. Schneider M, Aschauer S, Mascherbauer J, Ran H, Binder C, Lang I, et al. Echocardiographic assessment of right ventricular function: current clinical practice. Int J Cardiovasc Imaging. 2019;35(1):49–56. https://doi.org/10.1007/s10554-018-1428-8.

    Article  PubMed  Google Scholar 

  20. Ling LF, Obuchowski NA, Rodriguez L, Popovic Z, Kwon D, Marwick TH. Accuracy and interobserver concordance of echocardiographic assessment of right ventricular size and systolic function: a quality control exercise. J Am Soc Echocardiogr. 2012;25(7):709–13. https://doi.org/10.1016/j.echo.2012.03.018.

    Article  PubMed  Google Scholar 

  21. Bellsham-Revell HR, Simpson JM, Miller OI, Bell AJ. Subjective evaluation of right ventricular systolic function in hypoplastic left heart syndrome: how accurate is it? J Am Soc Echocardiogr. 2013;26(1):52–6. https://doi.org/10.1016/j.echo.2012.09.020.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schneider M, Ran H, Aschauer S, Binder C, Mascherbauer J, Lang I, et al. Visual assessment of right ventricular function by echocardiography: how good are we? Int J Cardiovasc Imaging. 2019;35(11):2001–8. https://doi.org/10.1007/s10554-019-01653-2.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tilly R, Mehrlaender M, Reichle C, Rosenberger P, Magunia H, Keller M. A one-day focused cardiac ultrasound training has a limited impact on residentsʼ abilities to visually assess right ventricular dimensions and function. Echocardiography. 2022;39(12):1481–7. https://doi.org/10.1111/echo.15461.

    Article  PubMed  Google Scholar 

  24. Zhang H, He W, Wang X, Chao Y, Zhang L, Zhu R, et al. Physiciansʼ ability to visually estimate left ventricular ejection fraction, right ventricular enlargement, and paradoxical septal motion after a 2-day focused cardiac ultrasound training course. J Cardiothorac Vasc Anesth. 2019;33(7):1912–8. https://doi.org/10.1053/j.jvca.2018.10.019.

    Article  PubMed  Google Scholar 

  25. Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815. https://doi.org/10.1007/s00134-014-3525-z.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123(16):1788–830. https://doi.org/10.1161/CIR.0b013e318214914f.

    Article  PubMed  Google Scholar 

  27. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39 e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  PubMed  Google Scholar 

  28. Hadad Y, Iluz M, Ziv-Baran T, Shalmon T, Rozenbaum Z, Berliner S, et al. High prevalence of right ventricular/left ventricular ratio >/=1 among patients undergoing computed tomography pulmonary angiography. J Thorac Imaging. 2021;36(4):231–5. https://doi.org/10.1097/RTI.0000000000000547.

    Article  PubMed  Google Scholar 

  29. Altmayer SPL, Han QJ, Addetia K, Patel AR, Forfia PR, Han Y. Using all-cause mortality to define severe RV dilation with RV/LV volume ratio. Sci Rep. 2018;8(1):7200. https://doi.org/10.1038/s41598-018-25259-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fremont B, Pacouret G, Jacobi D, Puglisi R, Charbonnier B, de Labriolle A. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest. 2008;133(2):358–62. https://doi.org/10.1378/chest.07-1231.

    Article  PubMed  Google Scholar 

  31. Pruszczyk P, Kurnicka K, Ciurzynski M, Hobohm L, Thielmann A, Sobkowicz B, et al. Defining right ventricular dysfunction by echocardiography in normotensive patients with pulmonary embolism. Pol Arch Intern Med. 2020;130(9):741–7. https://doi.org/10.20452/pamw.15459.

    Article  PubMed  Google Scholar 

  32. Cimini LA, Candeloro M, Plywaczewska M, Maraziti G, Di Nisio M, Pruszczyk P, et al. Prognostic role of different findings at echocardiography in acute pulmonary embolism: a critical review and meta-analysis. ERJ Open Res. 2023;9(2):00641–2022. https://doi.org/10.1183/23120541.00641-2022.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ammari Z, Hasnie AA, Ruzieh M, Dasa O, Al-Sarie M, Shastri P, et al. Prognostic value of computed tomography versus echocardiography derived right to left ventricular diameter ratio in acute pulmonary embolism. Am J Med Sci. 2021;361(4):445–50. https://doi.org/10.1016/j.amjms.2020.07.008.

    Article  PubMed  Google Scholar 

  34. Tang A, Hunsaker A, Hammer M. Significance of right-to-left ventricular ratio as a quantitative computed tomography biomarker in patients with negative computed tomography pulmonary angiograms. J Thorac Imaging. 2022;37(3):181–6. https://doi.org/10.1097/RTI.0000000000000630.

    Article  PubMed  Google Scholar 

  35. Cote B, Jimenez D, Planquette B, Roche A, Marey J, Pastre J, et al. Prognostic value of right ventricular dilatation in patients with low-risk pulmonary embolism. Eur Respir J. 2017;50(6):1701611. https://doi.org/10.1183/13993003.01611-2017.

    Article  PubMed  Google Scholar 

  36. Ayoz S, Erol S, Kul M, Gurun Kaya A, Gursoy Coruh A, Savas I, et al. Using RV/LV ratio and cardiac biomarkers to define the risk of mortality from pulmonary embolism. Tuberk Toraks. 2021;69(3):297–306. https://doi.org/10.5578/tt.20219701.

    Article  PubMed  Google Scholar 

  37. Bax S, Jacob J, Ahmed R, Bredy C, Dimopoulos K, Kempny A, et al. Right ventricular to left ventricular ratio at CT pulmonary angiogram predicts mortality in interstitial lung disease. Chest. 2020;157(1):89–98. https://doi.org/10.1016/j.chest.2019.06.033.

    Article  CAS  PubMed  Google Scholar 

  38. Cirulis MM, Huston JH, Sardar P, Suksaranjit P, Wilson BD, Hatton ND, et al. Right-to-left ventricular end diastolic diameter ratio in severe sepsis and septic shock. J Crit Care. 2018;48:307–10. https://doi.org/10.1016/j.jcrc.2018.09.025.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2017;18(12):1301–10. https://doi.org/10.1093/ehjci/jex244.

    Article  PubMed  Google Scholar 

  40. Claessen G, Claus P, Delcroix M, Bogaert J, La Gerche A, Heidbuchel H. Interaction between respiration and right versus left ventricular volumes at rest and during exercise: a real-time cardiac magnetic resonance study. Am J Physiol Heart Circ Physiol. 2014;306(6):H816–24. https://doi.org/10.1152/ajpheart.00752.2013.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang L, Levine RA, Weyman AE. Echocardiographic assessment of right ventricular volume and function. Echocardiography. 1997;14(2):189–206. https://doi.org/10.1111/j.1540-8175.1997.tb00711.x.

    Article  PubMed  Google Scholar 

  42. Norgard G, Vik-Mo H. Effects of respiration on right ventricular size and function: an echocardiographic study. Pediatr Cardiol. 1992;13(3):136–40. https://doi.org/10.1007/BF00793944.

    Article  CAS  PubMed  Google Scholar 

  43. Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5(4):918–27. https://doi.org/10.1016/s0735-1097(85)80433-2.

    Article  CAS  PubMed  Google Scholar 

  44. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation. 1983;68(1):68–75. https://doi.org/10.1161/01.cir.68.1.68.

    Article  CAS  PubMed  Google Scholar 

  45. Dasgupta S, Richardson JC, Aly AM, Jain SK. Role of functional echocardiographic parameters in the diagnosis of bronchopulmonary dysplasia-associated pulmonary hypertension. J Perinatol. 2022;42(1):19–30. https://doi.org/10.1038/s41372-021-01009-6.

    Article  PubMed  Google Scholar 

  46. Howard LS, Grapsa J, Dawson D, Bellamy M, Chambers JB, Masani ND, et al. Echocardiographic assessment of pulmonary hypertension: standard operating procedure. Eur Respir Rev. 2012;21(125):239–48. https://doi.org/10.1183/09059180.00003912.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Badano LP, Ginghina C, Easaw J, Muraru D, Grillo MT, Lancellotti P, et al. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11(1):27–37. https://doi.org/10.1093/ejechocard/jep152.

    Article  PubMed  Google Scholar 

  48. Wang L, Chen X, Wan K, Gong C, Li W, Xu Y, et al. Diagnostic and prognostic value of right ventricular eccentricity index in pulmonary artery hypertension. Pulm Circ. 2020;10(2):2045894019899778. https://doi.org/10.1177/2045894019899778.

    Article  PubMed  PubMed Central  Google Scholar 

  49. D’Alto M, Romeo E, Argiento P, Pavelescu A, Melot C, D’Andrea A, et al. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr. 2015;28(1):108–15. https://doi.org/10.1016/j.echo.2014.09.004.

    Article  PubMed  Google Scholar 

  50. Haddad F, Guihaire J, Skhiri M, Denault AY, Mercier O, Al-Halabi S, et al. Septal curvature is marker of hemodynamic, anatomical, and electromechanical ventricular interdependence in patients with pulmonary arterial hypertension. Echocardiography. 2014;31(6):699–707. https://doi.org/10.1111/echo.12468.

    Article  PubMed  Google Scholar 

  51. Teng WH, McCall PJ, Shelley BG. The utility of eccentricity index as a measure of the right ventricular function in a lung resection cohort. J Cardiovasc Echogr. 2019;29(3):103–10. https://doi.org/10.4103/jcecho.jcecho_19_19.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, et al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39(7):1214–9. https://doi.org/10.1016/s0735-1097(02)01744-8.

    Article  PubMed  Google Scholar 

  53. Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography. 2007;24(5):452–6. https://doi.org/10.1111/j.1540-8175.2007.00424.x.

    Article  PubMed  Google Scholar 

  54. Kaul S, Tei C, Hopkins JM, Shah PM. Assessment of right ventricular function using two-dimensional echocardiography. Am Heart J. 1984;107(3):526–31. https://doi.org/10.1016/0002-8703(84)90095-4.

    Article  CAS  PubMed  Google Scholar 

  55. Mertens LL, Friedberg MK. Imaging the right ventricle–current state of the art. Nat Rev Cardiol. 2010;7(10):551–63. https://doi.org/10.1038/nrcardio.2010.118.

    Article  PubMed  Google Scholar 

  56. Nesser HJ, Tkalec W, Patel AR, Masani ND, Niel J, Markt B, et al. Quantitation of right ventricular volumes and ejection fraction by three-dimensional echocardiography in patients: comparison with magnetic resonance imaging and radionuclide ventriculography. Echocardiography. 2006;23(8):666–80. https://doi.org/10.1111/j.1540-8175.2006.00286.x.

    Article  PubMed  Google Scholar 

  57. Aune E, Baekkevar M, Rodevand O, Otterstad JE. The limited usefulness of real-time 3-dimensional echocardiography in obtaining normal reference ranges for right ventricular volumes. Cardiovasc Ultrasound. 2009;7:35. https://doi.org/10.1186/1476-7120-7-35.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zornoff LA, Skali H, Pfeffer MA, St John Sutton M, Rouleau JL, Lamas GA, et al. Right ventricular dysfunction and risk of hear failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39(9):1450–5. https://doi.org/10.1016/s0735-1097(02)01804-1.

    Article  PubMed  Google Scholar 

  59. Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am J Cardiol. 2008;101(5):607–12. https://doi.org/10.1016/j.amjcard.2007.09.115.

    Article  PubMed  Google Scholar 

  60. Antoni ML, Scherptong RW, Atary JZ, Boersma E, Holman ER, van der Wall EE, et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ Cardiovasc Imaging. 2010;3(3):264–71. https://doi.org/10.1161/CIRCIMAGING.109.914366.

    Article  PubMed  Google Scholar 

  61. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8. https://doi.org/10.1016/s0735-1097(00)01102-5.

    Article  CAS  PubMed  Google Scholar 

  62. Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, et al. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail. 2016;18(12):1472–87. https://doi.org/10.1002/ejhf.630.

    Article  PubMed  Google Scholar 

  63. Okada DR, Rahmouni HW, Herrmann HC, Bavaria JE, Forfia PR, Han Y. Assessment of right ventricular function by transthoracic echocardiography following aortic valve replacement. Echocardiography. 2014;31(5):552–7. https://doi.org/10.1111/echo.12421.

    Article  PubMed  Google Scholar 

  64. Calvin JE Jr. Pressure segment length analysis of right ventricular function: influence of loading conditions. Am J Physiol. 1991;260(4 Pt 2):H1087–97. https://doi.org/10.1152/ajpheart.1991.260.4.H1087.

    Article  PubMed  Google Scholar 

  65. McConnell MV, Solomon SD, Rayan ME, Come PC, Goldhaber SZ, Lee RT. Regional right ventricular dysfunction detected by echocardiography in acute pulmonary embolism. Am J Cardiol. 1996;78(4):469–73. https://doi.org/10.1016/s0002-9149(96)00339-6.

    Article  CAS  PubMed  Google Scholar 

  66. Casazza F, Bongarzoni A, Capozi A, Agostoni O. Regional right ventricular dysfunction in acute pulmonary embolism and right ventricular infarction. Eur J Echocardiogr. 2005;6(1):11–4. https://doi.org/10.1016/j.euje.2004.06.002.

    Article  PubMed  Google Scholar 

  67. Fields JM, Davis J, Girson L, Au A, Potts J, Morgan CJ, et al. Transthoracic echocardiography for diagnosing pulmonary embolism: a systematic review and meta-analysis. J Am Soc Echocardiogr. 2017;30(7):714-23 e4. https://doi.org/10.1016/j.echo.2017.03.004.

    Article  PubMed  Google Scholar 

  68. Kjaergaard J, Schaadt BK, Lund JO, Hassager C. Quantification of right ventricular function in acute pulmonary embolism: relation to extent of pulmonary perfusion defects. Eur J Echocardiogr. 2008;9(5):641–5. https://doi.org/10.1093/ejechocard/jen033.

    Article  PubMed  Google Scholar 

  69. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41. https://doi.org/10.1164/rccm.200604-547OC.

    Article  PubMed  Google Scholar 

  70. Martha JW, Pranata R, Wibowo A, Lim MA. Tricuspid annular plane systolic excursion (TAPSE) measured by echocardiography and mortality in COVID-19: a systematic review and meta-analysis. Int J Infect Dis. 2021;105:351–6. https://doi.org/10.1016/j.ijid.2021.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lobo JL, Holley A, Tapson V, Moores L, Oribe M, Barron M, et al. Prognostic significance of tricuspid annular displacement in normotensive patients with acute symptomatic pulmonary embolism. J Thromb Haemost. 2014;12(7):1020–7. https://doi.org/10.1111/jth.12589.

    Article  CAS  PubMed  Google Scholar 

  72. Aceituno-Melgar JE, Posada-Martinez EL. Focused cardiac ultrasonography for right ventricular size and systolic function. N Engl J Med. 2023;388(12):1149–50. https://doi.org/10.1056/NEJMc2300338.

    Article  PubMed  Google Scholar 

  73. Surkova E, Cosyns B, Gerber B, Gimelli A, La Gerche A, Ajmone MN. The dysfunctional right ventricle: the importance of multi-modality imaging. Eur Heart J Cardiovasc Imaging. 2022;23(7):885–97. https://doi.org/10.1093/ehjci/jeac037.

    Article  PubMed  PubMed Central  Google Scholar 

  74. • Le MT, Voigt L, Nathanson R, Maw AM, Johnson G, Dancel R, et al. Comparison of four handheld point-of-care ultrasound devices by expert users. Ultrasound J. 2022;14(1):27. https://doi.org/10.1186/s13089-022-00274-6. Practical paper comparing 4 different handheld Point-of-care Ultrasound device.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349(6245):255–60. https://doi.org/10.1126/science.aaa8415.

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  76. Barry T, Farina JM, Chao CJ, Ayoub C, Jeong J, Patel BN, et al. The role of artificial intelligence in echocardiography. J Imaging. 2023;9(2):50. https://doi.org/10.3390/jimaging9020050.

    Article  PubMed  PubMed Central  Google Scholar 

  77. EchoNous: Kosmos Ultraportable Ultrasound. https://echonous.com/product/kosmos-ultraportable-ultrasound/. Accessed 23 Jan 2024.

  78. Baum E, Tandel MD, Ren C, Weng Y, Pascucci M, Kugler J, et al. Acquisition of cardiac point-of-care ultrasound images with deep learning a randomized trial for educational outcomes with novices. CHEST Pulmonary. 2023;1(3):100023. https://doi.org/10.1016/j.chpulm.2023.100023.

  79. Hsia BC, Lai A, Singh S, Samtani R, Bienstock S, Liao S, et al. Validation of American Society of Echocardiography Guideline-recommended parameters of right ventricular dysfunction using artificial intelligence compared with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2023;36(9):967–77. https://doi.org/10.1016/j.echo.2023.05.015.

    Article  PubMed  Google Scholar 

  80. Tokodi M, Magyar B, Soos A, Takeuchi M, Tolvaj M, Lakatos BK, et al. Deep learning-based prediction of right ventricular ejection fraction using 2D echocardiograms. JACC Cardiovasc Imaging. 2023;16(8):1005–18. https://doi.org/10.1016/j.jcmg.2023.02.017.

    Article  PubMed  Google Scholar 

  81. •• Kirkpatrick JN, Grimm R, Johri AM, Kimura BJ, Kort S, Labovitz AJ, et al. Recommendations for echocardiography laboratories participating in cardiac point of care cardiac ultrasound (POCUS) and critical care echocardiography training: report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2020;33(4):409-22 e4. https://doi.org/10.1016/j.echo.2020.01.008. Guideline of Point-of-care Ultrasound training.

    Article  PubMed  Google Scholar 

  82. Huang GS, Alviar CL, Wiley BM, Kwon Y. The era of point-of-care ultrasound has arrived: are cardiologists ready? Am J Cardiol. 2020;132:173–5. https://doi.org/10.1016/j.amjcard.2020.06.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Butterfly Network, Inc: Butterfly for Individuals Seeing is knowing. Patient assessment, transformed. https://www.butterflynetwork.com/iq-ultrasound-individuals. Accessed 23 Jan 2024.

  84. Clarius Ultrasound Scanner - HD3 Scanners User Manual. 2023.  https://support.clarius.com/hc/article_attachments/20287469196692. Accessed 23 Jan 2024.

  85. Wellbin Technology Co. L: Transforming Point-of-Care with Unparalleled Mobility: EagleView Wireless Probe Type Ultrasound Scanner. https://geteagleview.com/products/dual-head-wireless-handheld-ultrasound?currency=USD. Accessed 23 Jan 2024.

  86. Philips: Exceptional ultrasound capabilities in the palm of your hand. https://www.usa.philips.com/healthcare/sites/lumify-handheld-ultrasound. Accessed 23 Jan 2024.

  87. Mindray North America: TE Air Wireless Handheld Ultrasound. https://m9m2s9g3.rocketcdn.me/wp-content/uploads/2023/05/TE-Air-Launch-Brochure_6pg_FA-to-CR.pdf. Accessed 23 Jan 2024

  88. Dr.Sono: Tri-Scan Max Portable Ultrasound Scanner. https://drsono.com/product/tri-scan-max/. Accessed 23 Jan 2024.

  89. Inc. VH: Vave Wireless Ultrasound User Manual. 2021. https://vavehealth.com/wp-content/uploads/2021/01/Vave-Health-User-Guide.pdf. Accessed 23 Jan 2024.

  90. GE HealthCare: Vscan Air™ SL. https://handheldultrasound.gehealthcare.com/vscan-air-cl/. Accessed 22 Jan 2024.

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.I. and M.K. drafted the manuscript. All authors reviewed and provided critical comments and suggestions. All authors approved the final manuscript.

Corresponding author

Correspondence to Ikuyo Imayama.

Ethics declarations

Conflict of Interest

II receives a research grant from the American Academy of Sleep Medicine Foundation. TY is a Pulmonologist and Intensivist in Pulmonary, Critical Care Medicine at Jesse Brown VA Medical Center, Chicago, IL. MK is a Cardiologist in the Division of Cardiology at the University of Illinois at Chicago and the Jesse Brown VA Medical Center, Chicago, IL.

Human and Animal Rights and Informed Consent

This article does not contain any studies of human or animal subjects performed by any of the authors.

Disclaimer

The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imayama, I., Yamanaka, T., Ascoli, C. et al. Challenges in Grading the Severity of Right Ventricular Dysfunction via Point-of-Care Echocardiography. Curr Pulmonol Rep (2024). https://doi.org/10.1007/s13665-024-00346-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13665-024-00346-z

Keywords

Navigation