Skip to main content
Log in

Endobronchial Ultrasound Staging for Lung Cancer: What We Know Now and What We Need to Know

  • REVIEW
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article aims to assess the latest findings, equip clinicians with evidence-based recommendations, and highlight avenues for further research pertaining to EBUS-TBNA and lung cancer staging.

Recent Findings

The role of EBUS-TBNA for mediastinal staging continues to evolve. Studies continue to explore factors that affect the performance of EBUS as well as the potential patients that may benefit from such technology.

Summary

Collaborative efforts among specialized centers will be pivotal in driving further progress in EBUS-TBNA and enhancing the quality of care delivered to individuals with lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yang H, et al. Transbronchial needle aspiration: Development history, current status and future perspective. J Thorac Dis. 2015;7(Suppl 4):S279–86.

    PubMed  PubMed Central  Google Scholar 

  2. Herth F, Becker HD, Ernst A. Conventional vs endobronchial ultrasound-guided transbronchial needle aspiration: A randomized trial. Chest. 2004;125(1):322–5.

    Article  PubMed  Google Scholar 

  3. Herth FJ, Becker HD, Ernst A. Ultrasound-guided transbronchial needle aspiration: An experience in 242 patients. Chest. 2003;123(2):604–7.

    Article  PubMed  Google Scholar 

  4. Krasnik M, et al. Preliminary experience with a new method of endoscopic transbronchial real time ultrasound guided biopsy for diagnosis of mediastinal and hilar lesions. Thorax. 2003;58(12):1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alberts WM. Diagnosis and management of lung cancer executive summary: ACCP evidence-based clinical practice guidelines. Chest. 2007;132(3):1S–9S.

  6. Overview | Endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal masses | Guidance | NICE. 2008.

  7. • Silvestri GA, et al. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e211S–e250S. The most recent ACCP Guidelines.

  8. • De Leyn P, et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2014;45(5):787–98. The most recent ESTS guidelines.

  9. Herth FJ, et al. Real-time endobronchial ultrasound guided transbronchial needle aspiration for sampling mediastinal lymph nodes. Thorax. 2006;61(9):795–8.

  10. Khoo KL, Ho KY. Endoscopic mediastinal staging of lung cancer. Respir Med. 2011;105(4):515–8.

    Article  PubMed  Google Scholar 

  11. Rami-Porta R, et al. Lung cancer staging: A concise update. Eur Respir J. 2018;51(5).

  12. Ernst A, et al. Diagnosis of mediastinal adenopathy-real-time endobronchial ultrasound guided needle aspiration versus mediastinoscopy. J Thorac Oncol. 2008;3(6):577–82.

    Article  PubMed  Google Scholar 

  13. Yasufuku K, et al. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. J Thorac Cardiovasc Surg. 2011;142(6):1393-400.e1.

    Article  PubMed  Google Scholar 

  14. Annema JT, et al. Mediastinoscopy vs endosonography for mediastinal nodal staging of lung cancer: A randomized trial. JAMA. 2010;304(20):2245–52.

    Article  CAS  PubMed  Google Scholar 

  15. Sharples LD, et al. Clinical effectiveness and cost-effectiveness of endobronchial and endoscopic ultrasound relative to surgical staging in potentially resectable lung cancer: Results from the ASTER randomised controlled trial. Health Technol Assess. 2012;16(18):1–75, iii-iv.

  16. Sanz-Santos J, et al. Confirmatory Mediastinoscopy after negative endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal staging of lung cancer: Systematic review and meta-analysis. Ann Am Thorac Soc. 2022;19(9):1581–90.

    Article  PubMed  Google Scholar 

  17. Postmus PE, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv1–iv21.

  18. Casal RF, et al. Centrally located lung cancer and risk of occult nodal disease: An objective evaluation of multiple definitions of tumour centrality with dedicated imaging software. Eur Respir J. 2019;53(5).

  19. Murgu SD. Diagnosing and staging lung cancer involving the mediastinum. Chest. 2015;147(5):1401–12.

    Article  PubMed  Google Scholar 

  20. Collin-Castonguay MM, et al. Added value of invasive needle techniques in mediastinal and hilar nodal staging of clinical N0–N1 non-small cell lung cancer after positron emission tomography. Clin Transl Radiat Oncol. 2020;24:49–51.

    PubMed  PubMed Central  Google Scholar 

  21. Vial MR, et al. Endobronchial ultrasound-guided transbronchial needle aspiration in the nodal staging of stereotactic ablative body radiotherapy patients. Ann Thorac Surg. 2017;103(5):1600–5.

    Article  PubMed  Google Scholar 

  22. Choi S, et al. Importance of lymph node evaluation in ≤2-cm pure-solid non-small cell lung cancer. Ann Thorac Surg. 2023.

  23. Forde PM, et al. Neoadjuvant Nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022;386(21):1973–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. D’Andrilli A, et al. Mediastinal staging: When and how? Gen Thorac Cardiovasc Surg. 2020;68(7):725–32.

    Article  PubMed  Google Scholar 

  25. Majem M, et al. Multidisciplinary consensus statement on the clinical management of patients with stage III non-small cell lung cancer. Clin Transl Oncol. 2020;22(1):21–36.

    Article  CAS  PubMed  Google Scholar 

  26. Stamatis G. Staging of lung cancer: The role of noninvasive, minimally invasive and invasive techniques. Eur Respir J. 2015;46(2):521–31.

    Article  PubMed  Google Scholar 

  27. Herth FJ, et al. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically and positron emission tomography-normal mediastinum in patients with lung cancer. Chest. 2008;133(4):887–91.

    Article  PubMed  Google Scholar 

  28. Sainz Zúñiga PV, et al. Is biopsy of contralateral hilar N3 lymph nodes with negative PET-CT scan findings necessary when performing endobronchial ultrasound staging? Chest. 2021;159(4):1642–51.

    Article  PubMed  Google Scholar 

  29. Fujiwara T, et al. The utility of sonographic features during endobronchial ultrasound-guided transbronchial needle aspiration for lymph node staging in patients with lung cancer: A standard endobronchial ultrasound image classification system. Chest. 2010;138(3):641–7.

    Article  PubMed  Google Scholar 

  30. Wang Memoli JS, et al. Using endobronchial ultrasound features to predict lymph node metastasis in patients with lung cancer. Chest. 2011;140(6):1550–6.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hylton DA, et al. The Canada Lymph Node Score for prediction of malignancy in mediastinal lymph nodes during endobronchial ultrasound. J Thorac Cardiovasc Surg. 2020;159(6):2499-2507.e3.

    Article  PubMed  Google Scholar 

  32. He RX, et al. Clinical validation of the Canada Lymph Node Score for endobronchial ultrasound. Ann Thorac Surg. 2022.

  33. Sullivan KA, et al. Routine systematic sampling versus targeted sampling during endobronchial ultrasound: A randomized feasibility trial. J Thorac Cardiovasc Surg. 2022;164(1):254-261.e1.

    Article  PubMed  Google Scholar 

  34. •• Wahidi MM, et al. Technical aspects of endobronchial ultrasound-guided transbronchial needle aspiration: CHEST Guideline and Expert Panel Report. Chest. 2016;149(3):816–35. The most recent CHEST guidelines regarding the technical aspect of EBUS.

  35. Ophir J, et al. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  36. Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: An inversion-technique-based investigation of 169 samples. Phys Med Biol. 2007;52(6):1565–76.

    Article  PubMed  Google Scholar 

  37. Huang H, et al. Effectiveness of the benign and malignant diagnosis of mediastinal and hilar lymph nodes by endobronchial ultrasound elastography. J Cancer. 2017;8(10):1843–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Korrungruang P, Boonsarngsuk V. Diagnostic value of endobronchial ultrasound elastography for the differentiation of benign and malignant intrathoracic lymph nodes. Respirology. 2017;22(5):972–7.

    Article  PubMed  Google Scholar 

  39. Gu Y, et al. The role of endobronchial ultrasound elastography in the diagnosis of mediastinal and hilar lymph nodes. Oncotarget. 2017;8(51):89194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin CK, et al. Differentiating malignant and benign lymph nodes using endobronchial ultrasound elastography. J Formos Med Assoc. 2019;118(1 Pt 3):436–43.

    Article  PubMed  Google Scholar 

  41. Fournier C, et al. Performance of endobronchial ultrasound elastography in the differentiation of malignant and benign mediastinal lymph nodes: Results in real-life practice. J Bronchology Interv Pulmonol. 2019;26(3):193–8.

    Article  PubMed  Google Scholar 

  42. Hernández Roca M, et al. Diagnostic value of elastography and endobronchial ultrasound in the study of hilar and mediastinal lymph nodes. J Bronchology Interv Pulmonol. 2019;26(3):184–92.

    Article  PubMed  Google Scholar 

  43. Nakajima T, et al. Elastography for predicting and localizing nodal metastases during endobronchial ultrasound. Respiration. 2015;90(6):499–506.

    Article  PubMed  Google Scholar 

  44. Ma H, et al. Semi-quantitative Analysis of EBUS elastography as a feasible approach in diagnosing mediastinal and hilar lymph nodes of lung cancer patients. Sci Rep. 2018;8(1):3571.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Verhoeven RLJ, de Korte CL, van der Heijden EHFM. Optimal endobronchial ultrasound strain elastography assessment strategy: An explorative study. Respiration. 2019;97(4):337–47.

    Article  PubMed  Google Scholar 

  46. Verhoeven RLJ, et al. Predictive value of endobronchial ultrasound strain elastography in mediastinal lymph node staging: The E-Predict Multicenter Study results. Respiration. 2020;99(6):484–92.

    Article  PubMed  Google Scholar 

  47. Jaliawala HA, et al. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA): Technical updates and pathological yield. Diagnostics (Basel). 2021;11(12).

  48. Torre M, et al. Diagnostic accuracy of endobronchial ultrasound-transbronchial needle aspiration (EBUS-TBNA) for mediastinal lymph node staging of lung cancer. Mediastinum. 2021;5:15.

    Article  PubMed  PubMed Central  Google Scholar 

  49. O’Connell OJ, et al. A prediction model to help with the assessment of adenopathy in lung cancer: HAL. Am J Respir Crit Care Med. 2017;195(12):1651–60.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Zayas G, et al. A prediction model to help with oncologic mediastinal evaluation for radiation: HOMER. Am J Respir Crit Care Med. 2020;201(2):212–23.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martinez-Zayas G, et al. Predicting lymph node metastasis in non-small cell lung cancer: Prospective external and temporal validation of the HAL and HOMER models. Chest. 2021;160(3):1108–20.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee HS, et al. Real-time endobronchial ultrasound-guided transbronchial needle aspiration in mediastinal staging of non-small cell lung cancer: How many aspirations per target lymph node station? Chest. 2008;134(2):368–74.

    Article  PubMed  Google Scholar 

  53. Yarmus L, et al. Optimizing endobronchial ultrasound for molecular analysis. How many passes are needed? Ann Am Thorac Soc. 2013;10(6):636–43.

  54. Griffin AC, Schwartz LE, Baloch ZW. Utility of on-site evaluation of endobronchial ultrasound-guided transbronchial needle aspiration specimens. Cytojournal. 2011;8:20.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Oki M, et al. Rapid on-site cytologic evaluation during endobronchial ultrasound-guided transbronchial needle aspiration for diagnosing lung cancer: A randomized study. Respiration. 2013;85(6):486–92.

    Article  PubMed  Google Scholar 

  56. Trisolini R, et al. Rapid on-site evaluation of transbronchial aspirates in the diagnosis of hilar and mediastinal adenopathy: A randomized trial. Chest. 2011;139(2):395–401.

    Article  PubMed  Google Scholar 

  57. Murakami Y, et al. Endobronchial ultrasound-guided transbronchial needle aspiration in the diagnosis of small cell lung cancer. Respir Investig. 2014;52(3):173–8.

    Article  PubMed  Google Scholar 

  58. Guo H, et al. Rapid on-site evaluation during endobronchial ultrasound-guided transbronchial needle aspiration for the diagnosis of hilar and mediastinal lymphadenopathy in patients with lung cancer. Cancer Lett. 2016;371(2):182–6.

    Article  CAS  PubMed  Google Scholar 

  59. Cardoso AV, et al. The value of rapid on-site evaluation during EBUS-TBNA. Rev Port Pneumol. (2006) 2015;21(5):253–8.

  60. • Eapen GA, et al. Complications, consequences, and practice patterns of endobronchial ultrasound-guided transbronchial needle aspiration: Results of the AQuIRE registry. Chest. 2013;143(4):1044–53. A landmark study highlighting complications and practice patterns of EBUS-TBNA.

  61. Sehgal IS, et al. Impact of rapid on-site cytological evaluation (ROSE) on the diagnostic yield of transbronchial needle aspiration during mediastinal lymph node sampling: Systematic review and meta-analysis. Chest. 2018;153(4):929–38.

    Article  PubMed  Google Scholar 

  62. Sainz Zuñiga PV, et al. Sensitivity of radial endobronchial ultrasound-guided bronchoscopy for lung cancer in patients with peripheral pulmonary lesions: An updated meta-analysis. Chest. 2019.

  63. Folch EE, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: One-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol. 2019;14(3):445–58.

    Article  PubMed  Google Scholar 

  64. Jain D, et al. Rapid on-site evaluation of endobronchial ultrasound-guided transbronchial needle aspirations for the diagnosis of lung cancer: A perspective from members of the Pulmonary Pathology Society. Arch Pathol Lab Med. 2018;142(2):253–62.

    Article  PubMed  Google Scholar 

  65. van der Heijden EH, et al. Guideline for the acquisition and preparation of conventional and endobronchial ultrasound-guided transbronchial needle aspiration specimens for the diagnosis and molecular testing of patients with known or suspected lung cancer. Respiration. 2014;88(6):500–17.

    Article  PubMed  Google Scholar 

  66. Jurado J, et al. The efficacy of EBUS-guided transbronchial needle aspiration for molecular testing in lung adenocarcinoma. Ann Thorac Surg. 2013;96(4):1196–202.

    Article  PubMed  Google Scholar 

  67. Trisolini R, et al. Randomized trial of endobronchial ultrasound-guided transbronchial needle aspiration with and without rapid on-site evaluation for lung cancer genotyping. Chest. 2015;148(6):1430–7.

    Article  PubMed  Google Scholar 

  68. Mohan A, et al. A randomized comparison of sample adequacy and diagnostic yield of various suction pressures in EBUS-TBNA. Adv Respir Med. 2021;89(3):268–76.

    Article  PubMed  Google Scholar 

  69. Harris K, et al. Comparison of cytologic accuracy of endobronchial ultrasound transbronchial needle aspiration using needle suction versus no suction. Endosc Ultrasound. 2015;4(2):115–9.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Casal RF, et al. Randomized clinical trial of endobronchial ultrasound needle biopsy with and without aspiration. Chest. 2012;142(3):568–73.

    Article  PubMed  Google Scholar 

  71. Rotolo N, et al. Comparison of multiple techniques for endobronchial ultrasound-transbronchial needle aspiration specimen preparation in a single institution experience. J Thorac Dis. 2017;9(Suppl 5):S381–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nardecchia E, Cattoni M, Dominioni L. Endobronchial ultrasound-transbronchial needle aspiration for mediastinal staging of non-small cell lung cancer: Variability of results and perspectives. J Thorac Dis. 2017;9(Suppl 5):S418–24.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Navani N, et al. Suitability of endobronchial ultrasound-guided transbronchial needle aspiration specimens for subtyping and genotyping of non-small cell lung cancer: A multicenter study of 774 patients. Am J Respir Crit Care Med. 2012;185(12):1316–22.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Steinfort DP, et al. Interobserver agreement in determining non-small cell lung cancer subtype in specimens acquired by EBUS-TBNA. Eur Respir J. 2012;40(3):699–705.

    Article  PubMed  Google Scholar 

  75. Yarmus LB, et al. Comparison of moderate versus deep sedation for endobronchial ultrasound transbronchial needle aspiration. Ann Am Thorac Soc. 2013;10(2):121–6.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ost DE, et al. Diagnostic yield of endobronchial ultrasound-guided transbronchial needle aspiration: Results of the AQuIRE Bronchoscopy Registry. Chest. 2011;140(6):1557–66.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fernandes MGO, et al. Endobronchial ultrasound under moderate sedation versus general anesthesia. J Clin Med. 2018;7(11).

  78. Casal RF, et al. Randomized trial of endobronchial ultrasound-guided transbronchial needle aspiration under general anesthesia versus moderate sedation. Am J Respir Crit Care Med. 2015;191(7):796–803.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Conte SC, et al. Deep sedation versus minimal sedation during endobronchial ultrasound transbronchial needle aspiration. Monaldi Arch Chest Dis. 2018;88(3):967.

    Article  PubMed  Google Scholar 

  80. Boujaoude Z, et al. Impact of moderate sedation versus monitored anesthesia care on outcomes and cost of endobronchial ultrasound transbronchial needle aspiration. Pulm Med. 2019;2019:4347852.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ettinger DS, et al. Non-Small Cell Lung Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20(5):497–530.

  82. Jeyabalan A, et al. Adequacy of endobronchial ultrasound-guided transbronchial needle aspiration samples processed as histopathological samples for genetic mutation analysis in lung adenocarcinoma. Mol Clin Oncol. 2016;4(1):119–25.

    Article  CAS  PubMed  Google Scholar 

  83. Labarca G, et al. Adequacy of samples obtained by endobronchial ultrasound with transbronchial needle aspiration for molecular analysis in patients with non-small cell lung cancer. Systematic review and meta-analysis. Ann Am Thorac Soc. 2018;15(10):1205–16.

  84. Muriana P, Rossetti F. The role of EBUS-TBNA in lung cancer restaging and mutation analysis. Mediastinum. 2020;4:23.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Folch E, et al. Adequacy of lymph node transbronchial needle aspirates using convex probe endobronchial ultrasound for multiple tumor genotyping techniques in non-small-cell lung cancer. J Thorac Oncol. 2013;8(11):1438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roy-Chowdhuri S, et al. Collection and handling of thoracic small biopsy and cytology specimens for ancillary studies: Guideline from the College of American Pathologists in Collaboration With the American College of Chest Physicians, Association for Molecular Pathology, American Society of Cytopathology, American Thoracic Society, Pulmonary Pathology Society, Papanicolaou Society of Cytopathology, Society of Interventional Radiology, and Society of Thoracic Radiology. Arch Pathol Lab Med. 2020.

  87. Lindeman NI, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–46.

    Article  CAS  PubMed  Google Scholar 

  88. Patel P, et al. First evaluation of the new thin convex probe endobronchial ultrasound scope: A human ex vivo lung study. Ann Thorac Surg. 2017;103(4):1158–64.

    Article  PubMed  Google Scholar 

  89. Yang J, et al. Narrative review of tools for endoscopic ultrasound-guided biopsy of mediastinal nodes. Mediastinum. 2020;4:34.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nakajima T, et al. Comparison of 21-gauge and 22-gauge aspiration needle during endobronchial ultrasound-guided transbronchial needle aspiration. Respirology. 2011;16(1):90–4.

    Article  PubMed  Google Scholar 

  91. Saji J, et al. Comparison of 21-gauge and 22-gauge needles for endobronchial ultrasound-guided transbronchial needle aspiration of mediastinal and hilar lymph nodes. J Bronchology Interv Pulmonol. 2011;18(3):239–46.

    Article  PubMed  Google Scholar 

  92. Oki M, et al. Randomized study of 21-gauge versus 22-gauge endobronchial ultrasound-guided transbronchial needle aspiration needles for sampling histology specimens. J Bronchology Interv Pulmonol. 2011;18(4):306–10.

    Article  PubMed  Google Scholar 

  93. Jeyabalan A, Shelley-Fraser G, Medford AR. Impact of needle gauge on characterization of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) histology samples. Respirology. 2014;19(5):735–9.

    Article  PubMed  Google Scholar 

  94. Yarmus LB, et al. Comparison of 21-gauge and 22-gauge aspiration needle in endobronchial ultrasound-guided transbronchial needle aspiration: Results of the American College of Chest Physicians Quality Improvement Registry, Education, and Evaluation Registry. Chest. 2013;143(4):1036–43.

    Article  PubMed  Google Scholar 

  95. Giri S, et al. Meta-analysis of 21- versus 22-G aspiration needle during endobronchial ultrasound-guided transbronchial needle aspiration. J Bronchology Interv Pulmonol. 2015;22(2):107–13.

    Article  PubMed  Google Scholar 

  96. Chaddha U, et al. Comparison of sample adequacy and diagnostic yield of 19- and 22-G EBUS-TBNA needles. J Bronchology Interv Pulmonol. 2018;25(4):264–8.

    Article  PubMed  Google Scholar 

  97. Garrison G, et al. Use of an additional 19-G EBUS-TBNA needle increases the diagnostic yield of EBUS-TBNA. J Bronchology Interv Pulmonol. 2018;25(4):269–73.

    Article  PubMed  Google Scholar 

  98. Wolters C, et al. A prospective, randomized trial for the comparison of 19-G and 22-G endobronchial ultrasound-guided transbronchial aspiration needles; introducing a novel end point of sample weight corrected for blood content. Clin Lung Cancer. 2019;20(3):e265–73.

    Article  PubMed  Google Scholar 

  99. Dooms C, et al. A randomized clinical trial of flex 19G needles versus 22G needles for endobronchial ultrasonography in suspected lung cancer. Respiration. 2018;96(3):275–82.

    Article  PubMed  Google Scholar 

  100. Di Felice C, Young B, Matta M. Comparison of specimen adequacy and diagnostic accuracy of a 25-gauge and 22-gauge needle in endobronchial ultrasound-guided transbronchial needle aspiration. J Thorac Dis. 2019;11(8):3643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Sakaguchi T, et al. Comparison of the 22-gauge and 25-gauge needles for endobronchial ultrasound-guided transbronchial needle aspiration. Respir Investig. 2021;59(2):235–9.

    Article  PubMed  Google Scholar 

  102. Romatowski NPJ, et al. Endobronchial ultrasound transbronchial needle aspiration with a 19-gauge needle vs 21- and 22-gauge needles for mediastinal lymphadenopathy. Chest. 2022;162(3):712–20.

    Article  PubMed  Google Scholar 

  103. Sakai T, et al. Comparison of the efficiency of endobronchial ultrasound-guided transbronchial needle aspiration using a 22G needle versus 25G needle for the diagnosis of lymph node metastasis in patients with lung cancer: A prospective randomized, crossover study. Transl Lung Cancer Res. 2021;10(9):3745–58.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cheng G, et al. Endobronchial ultrasound-guided intranodal forceps biopsy (EBUS-IFB)-technical review. J Thorac Dis. 2019;11(9):4049–58.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Konno-Yamamoto A, et al. Feasibility of modified endobronchial ultrasound-guided intranodal forceps biopsy: A retrospective analysis. Respiration. 2023;102(2):143–53.

    Article  CAS  PubMed  Google Scholar 

  106. Chrissian A, Misselhorn D, Chen A. Endobronchial-ultrasound guided miniforceps biopsy of mediastinal and hilar lesions. Ann Thorac Surg. 2011;92(1):284–8.

    Article  PubMed  Google Scholar 

  107. Agrawal A, et al. Combined EBUS-IFB and EBUS-TBNA vs EBUS-TBNA alone for intrathoracic adenopathy: A meta-analysis. Ann Thorac Surg. 2022;114(1):340–8.

    Article  PubMed  Google Scholar 

  108. Gershman E, et al. Mediastinal “deep freeze”-transcarinal lymph node cryobiopsy. Thorac Cancer. 2022;13(11):1592–6.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang J, et al. Transbronchial mediastinal cryobiopsy in the diagnosis of mediastinal lesions: A randomised trial. Eur Respir J. 2021;58(6).

Download references

Author information

Authors and Affiliations

Authors

Contributions

SB, DS, LJ, MD, and AS: conception and design, drafting the article, critical revision of intellectual content, and final approval of the version to be published.

Corresponding author

Correspondence to Ala Eddin S. Sagar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennji, S.M., Sagar, D., Jarnagin, L. et al. Endobronchial Ultrasound Staging for Lung Cancer: What We Know Now and What We Need to Know. Curr Pulmonol Rep 12, 198–209 (2023). https://doi.org/10.1007/s13665-023-00326-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-023-00326-9

Keywords

Navigation