Skip to main content

Advertisement

Log in

Pulmonary Alveolar Proteinosis Secondary to Occupational Exposure

  • Environmental and Occupational Health (S Cherian, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Occupational exposures are associated with a wide array of respiratory disorders that include asbestosis, coal workers’ pneumoconiosis and silicosis, asthma, COPD, bronchiolitis, hypersensitivity pneumonitis, pulmonary fibrosis, sarcoidosis, and certain infections. Pulmonary alveolar proteinosis (PAP) is characterized by accumulation of lipoproteinaceous material in the alveoli and alveolar macrophages. Autoimmunity is the most common etiology for PAP and involves autoantibodies targeting GM-CSF signaling. However, certain occupational and environmental inhalational exposures have been considered causative for PAP, although this constitutes a relative minority of the patients. The review article sheds light on the current knowledge of occupational/environmental respiratory exposures that can cause PAP.

Recent Findings

There is increased recognition of occupational respiratory exposures implicated in PAP. The role of silica exposure in causing PAP is well recognized and constitutes the most common etiology for occupational PAP. However, since its original description, several other agents have been identified that can trigger PAP in those exposed. Most recently, PAP has been described in a cohort of indium workers who produce indium-tin oxide (ITO), used to manufacture transparent conductive coating for flat panel displays such as liquid crystal displays (LCDs), touch screens, and solar cells. Some exposed workers with PAP have been found to have autoantibodies to GM-CSF.

Summary

Besides silica, PAP is associated with a wide variety of vapors, gases, dusts, and fumes. In some patients with occupational exposure, it is possible that the offending agent may trigger autoimmunity against GM-CSF that can induce PAP. Patients with occupational PAP may have concomitant emphysema and/or pulmonary fibrosis. Depending on the degree of manifestations, treatment approach ranges from watchful monitoring to invasive modalities like whole lung lavage. Recognition of an occupational etiology for PAP has implication both for the patient and for co-workers, who may also be at risk. Physician reporting to regulatory and public health authorities can ensure that existing exposure limits and medical surveillance requirements, such as are in place for silica, are enforced and that novel or unregulated exposures are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tazawa R, Ueda T, Abe M, Tatsumi K, Eda R, Kondoh S, et al. Inhaled GM-CSF for pulmonary alveolar proteinosis. N Engl J Med. 2019;381(10):923–32.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar A, Abdelmalak B, Inoue Y, Culver DA. Pulmonary alveolar proteinosis in adults: pathophysiology and clinical approach. Lancet Respir Med. 2018;6(7):554–65.

    Article  CAS  PubMed  Google Scholar 

  3. Inoue Y, Trapnell BC, Tazawa R, Arai T, Takada T, Hizawa N, et al. Characteristics of a large cohort of patients with autoimmune pulmonary alveolar proteinosis in Japan. Am J Respir Crit Care Med. 2008;177(7):752–62.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Seymour JF, Presneill JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med. 2002;166(2):215–35 Landmark review paper is the largest historic analysis of PAP since its original description.

    Article  PubMed  Google Scholar 

  5. Davidson JM, Macleod WM. Pulmonary alveolar proteinosis. Br J Dis Chest. 1969;63(1):13–28.

    Article  CAS  PubMed  Google Scholar 

  6. Bonella F, Bauer PC, Griese M, Ohshimo S, Guzman J, Costabel U. Pulmonary alveolar proteinosis: new insights from a single-center cohort of 70 patients. Respir Med. 2011;105(12):1908–16.

    Article  PubMed  Google Scholar 

  7. McEuen DD, Abraham JL. Particulate concentrations in pulmonary alveolar proteinosis. Environ Res. 1978;17(3):334–9.

    Article  CAS  PubMed  Google Scholar 

  8. Abraham JL, McEuen DD. Inorganic particulates associated with pulmonary alveolar proteinosis: SEM and X-ray microanalysis results. Appl Pathol. 1986;4(3):138–46.

    CAS  PubMed  Google Scholar 

  9. Briens E, Delaval P, Mairesse MP, Valeyre D, Wallaert B, Lazor R, et al. Pulmonary alveolar proteinosis. Rev Mal Respir. 2002;19(2 Pt1):166–82.

    CAS  PubMed  Google Scholar 

  10. Guo WL, Zhou ZQ, Chen L, Su ZQ, Zhong CH, Chen Y, et al. Serum KL-6 in pulmonary alveolar proteinosis: China compared historically with Germany and Japan. J Thorac Dis. 2017;9(2):287–95.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Campo I, Mariani F, Rodi G, Paracchini E, Tsana E, Piloni D, et al. Assessment and management of pulmonary alveolar proteinosis in a reference center. Orphanet J Rare Dis. 2013;8:40–1172.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Asamoto H, Kitaichi M, Nishimura K, Itoh H, Izumi T. Primary pulmonary alveolar proteinosis--clinical observation of 68 patients in Japan. Nihon Kyobu Shikkan Gakkai Zasshi. 1995;33(8):835–45.

    CAS  PubMed  Google Scholar 

  13. Fijołek J, Wiatr E, Radzikowska E, Bestry I, Langfort R, Polubiec-Kownacka M, et al. Pulmonary alveolar proteinosis during a 30-year observation. Diagnosis and treatment. Pneumonol Alergol Pol. 2014;82(3):206–17.

    PubMed  Google Scholar 

  14. Xiao YL, Xu KF, Li Y, Li Y, Li H, Shi B, et al. Occupational inhalational exposure and serum GM-CSF autoantibody in pulmonary alveolar proteinosis. Occup Environ Med. 2015;72(7):504–12.

    Article  PubMed  Google Scholar 

  15. Fang CS, Wang YC, Zhang TH, Wu J, Wang W, Wang C, et al. Clinical significance of serum lipids in idiopathic pulmonary alveolar proteinosis. Lipids Health Dis. 2012;11:12–511X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang Z, Yi X, Luo B, Zhu J, Wu Y, Jiang W, et al. Induced sputum deposition improves diagnostic yields of pulmonary alveolar proteinosis: a clinicopathological and methodological study of 17 cases. Ultrastruct Pathol. 2016;40(1):7–13.

    Article  PubMed  Google Scholar 

  17. Deleanu OC, Zaharie AM, Şerbescu A, NiŢu FM, MihălŢan FD, Arghir OC. Analysis of bronchoalveolar lavage fluid in a first Romanian pulmonary alveolar proteinosis cohort. Romanian J Morphol Embryol. 2016;57(2 Suppl):737–43.

    Google Scholar 

  18. Prakash UB, Barham SS, Carpenter HA, Dines DE, Marsh HM. Pulmonary alveolar phospholipoproteinosis: experience with 34 cases and a review. Mayo Clin Proc. 1987;62(6):499–518.

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein LS, Kavuru MS, Curtis-McCarthy P, Christie HA, Farver C, Stoller JK. Pulmonary alveolar proteinosis: clinical features and outcomes. Chest. 1998;114(5):1357–62.

    Article  CAS  PubMed  Google Scholar 

  20. Hadda V, Tiwari P, Madan K, Mohan A, Gupta N, Bharti SJ, et al. Pulmonary alveolar proteinosis: experience from a tertiary care center and systematic review of Indian literature. Lung India. 2016;33(6):626–34.

    Article  PubMed  PubMed Central  Google Scholar 

  21. • Cummings KJ, Donat WE, Ettensohn DB, Roggli VL, Ingram P, Kreiss K. Pulmonary alveolar proteinosis in workers at an indium processing facility. Am J Respir Crit Care Med. 2010;181(5):458–64 First observational study that reported indium as a causative agent for occupational PAP.

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki T, Sakagami T, Young LR, Carey BC, Wood RE, Luisetti M, et al. Hereditary pulmonary alveolar proteinosis: pathogenesis, presentation, diagnosis, and therapy. Am J Respir Crit Care Med. 2010;182(10):1292–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Blanc PD, Annesi-Maesano I, Balmes JR, Cummings KJ, Fishwick D, Miedinger D, et al. The occupational burden of nonmalignant respiratory diseases. An official American Thoracic Society and European Respiratory Society statement. Am J Respir Crit Care Med. 2019;199(11):1312–34 American Thoracic Society and European Respiratory Society statement about occupational burden of pulmonary alveolar proteinosis.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xipell JM, Ham KN, Price CG, Thomas DP. Acute silicoproteinosis. Thorax. 1977;32(1):104–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sauni R, Jarvenpaa R, Iivonen E, Nevalainen S, Uitti J. Pulmonary alveolar proteinosis induced by silica dust? Occup Med (Lond). 2007;57(3):221–4.

    Article  Google Scholar 

  26. Blanc PD. “Acute” silicosis at the 1930 Johannesburg Conference on silicosis and in its aftermath: controversies over a distinct entity later recognized as silicoproteinosis. Am J Ind Med. 2015;58(Suppl 1):S39–47.

    Article  PubMed  Google Scholar 

  27. Buechner HA, Ansari A. Acute silico-proteinosis. A new pathologic variant of acute silicosis in sandblasters, characterized by histologic features resembling alveolar proteinosis. Dis Chest. 1969;55(4):274–8.

    Article  CAS  PubMed  Google Scholar 

  28. Akgun M, Gorguner M, Meral M, Turkyilmaz A, Erdogan F, Saglam L, et al. Silicosis caused by sandblasting of jeans in Turkey: a report of two concomitant cases. J Occup Health. 2005;47(4):346–9.

    Article  PubMed  Google Scholar 

  29. Levin K, McLean C, Hoy R. Artificial stone-associated silicosis: clinical-pathological-radiological correlates of disease. Respirol Case Rep. 2019;7(7):e00470.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rose C, Heinzerling A, Patel K, Sack C, Wolff J, Zell-Baran L, et al. Severe silicosis in engineered stone fabrication workers - California, Colorado, Texas, and Washington, 2017-2019. MMWR Morb Mortal Wkly Rep. 2019;68(38):813–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Eden KG, von Seebach HB. Atypical quartz dust-induced pneumoconiosis in SPF rats. Aspects of the role of the lymphatic system in the pathogenesis of silicosis. Virchows Arch A Pathol Anat Histol. 1976;372(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  32. Cummings KJ, Nakano M, Omae K, Takeuchi K, Chonan T, Xiao YL, et al. Indium lung disease. Chest. 2012;141(6):1512–21.

    Article  PubMed  Google Scholar 

  33. Bomhard EM. Particle-induced pulmonary alveolar proteinosis and subsequent inflammation and fibrosis: a toxicologic and pathologic review. Toxicol Pathol. 2017;45(3):389–401.

    Article  CAS  PubMed  Google Scholar 

  34. Noguchi S, Eitoku M, Kiyosawa H, Suganuma N. Fibrotic gene expression coexists with alveolar proteinosis in early indium lung. Inhal Toxicol. 2016;28(9):421–8.

    Article  CAS  PubMed  Google Scholar 

  35. Badding MA, Fix NR, Orandle MS, Barger MW, Dunnick KM, Cummings KJ, et al. Pulmonary toxicity of indium-tin oxide production facility particles in rats. J Appl Toxicol. 2016;36(4):618–26.

    Article  CAS  PubMed  Google Scholar 

  36. Nagano K, Nishizawa T, Eitaki Y, Ohnishi M, Noguchi T, Arito H, et al. Pulmonary toxicity in mice by 2- and 13-week inhalation exposures to indium-tin oxide and indium oxide aerosols. J Occup Health. 2011;53(3):234–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lison D, Laloy J, Corazzari I, Muller J, Rabolli V, Panin N, et al. Sintered indium-tin-oxide (ITO) particles: a new pneumotoxic entity. Toxicol Sci. 2009;108(2):472–81.

    Article  CAS  PubMed  Google Scholar 

  38. Badding MA, Stefaniak AB, Fix NR, Cummings KJ, Leonard SS. Cytotoxicity and characterization of particles collected from an indium-tin oxide production facility. J Toxicol Environ Health A. 2014;77(20):1193–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huaux F, De Gussem V, Lebrun A, Yakoub Y, Palmai-Pallag M, Ibouraadaten S, et al. New interplay between interstitial and alveolar macrophages explains pulmonary alveolar proteinosis (PAP) induced by indium tin oxide particles. Arch Toxicol. 2018;92(4):1349–61.

    Article  CAS  PubMed  Google Scholar 

  40. Vallyathan V, Shi XL, Dalal NS, Irr W, Castranova V. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. Am Rev Respir Dis. 1988;138(5):1213–9.

    Article  CAS  PubMed  Google Scholar 

  41. Iyer R, Hamilton RF, Li L, Holian A. Silica-induced apoptosis mediated via scavenger receptor in human alveolar macrophages. Toxicol Appl Pharmacol. 1996;141(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  42. Hamilton RF, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med. 2008;44(7):1246–58.

    Article  CAS  PubMed  Google Scholar 

  43. Chew R, Nigam S, Sivakumaran P. Alveolar proteinosis associated with aluminium dust inhalation. Occup Med (Lond). 2016;66(6):492–4.

    Article  CAS  Google Scholar 

  44. Shaughnessy GF, Lee AS. Pulmonary alveolar proteinosis, barbecue smoke, and granulocyte-macrophage colony-stimulating factor therapy. Am J Med. 2016;129(1):e7–8.

    Article  PubMed  Google Scholar 

  45. Cooper GS, Miller FW, Germolec DR. Occupational exposures and autoimmune diseases. Int Immunopharmacol. 2002;2(2–3):303–13.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao YY, Huang H, Liu YZ, Song XY, Li S, Xu ZJ. Whole lung lavage treatment of Chinese patients with autoimmune pulmonary alveolar proteinosis: a retrospective long-term follow-up study. Chin Med J. 2015;128(20):2714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shah PL, Hansell D, Lawson PR, Reid KB, Morgan C. Pulmonary alveolar proteinosis: clinical aspects and current concepts on pathogenesis. Thorax. 2000;55(1):67–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki T, Trapnell BC. Pulmonary alveolar proteinosis syndrome. Clin Chest Med. 2016;37(3):431–40.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin FC, Chen YC, Chang SC. Clinical importance of bronchoalveolar lavage fluid and blood cytokines, surfactant protein D, and Kerbs von Lungren 6 antigen in idiopathic pulmonary alveolar proteinosis. Mayo Clin Proc. 2008;83(12):1344–9.

    Article  CAS  PubMed  Google Scholar 

  50. Arai T, Inoue Y, Sugimoto C, Inoue Y, Nakao K, Takeuchi N, et al. CYFRA 21-1 as a disease severity marker for autoimmune pulmonary alveolar proteinosis. Respirology. 2014;19(2):246–52.

    Article  PubMed  Google Scholar 

  51. Bonella F, Long X, He X, Ohshimo S, Griese M, Guzman J, et al. Serum YKL-40 is a reliable biomarker for pulmonary alveolar proteinosis. Respirology. 2017;22:1371–8.

    Article  PubMed  Google Scholar 

  52. Bonella F, Ohshimo S, Miaotian C, Griese M, Guzman J, Costabel U. Serum KL-6 is a predictor of outcome in pulmonary alveolar proteinosis. Orphanet J Rare Dis. 2013;8:53–1172.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bonfield TL, Russell D, Burgess S, Malur A, Kavuru MS, Thomassen MJ. Autoantibodies against granulocyte macrophage colony-stimulating factor are diagnostic for pulmonary alveolar proteinosis. Am J Respir Cell Mol Biol. 2002;27(4):481–6.

    Article  CAS  PubMed  Google Scholar 

  54. Lin FC, Chang GD, Chern MS, Chen YC, Chang SC. Clinical significance of anti-GM-CSF antibodies in idiopathic pulmonary alveolar proteinosis. Thorax. 2006;61(6):528–34.

    Article  PubMed  PubMed Central  Google Scholar 

  55. • Kitamura T, Tanaka N, Watanabe J, Uchida KS, Yamada Y, et al. Idiopathic pulmonary alveolar proteinosis as an autoimmune disease with neutralizing antibody against granulocyte/macrophage colony-stimulating factor. J Exp Med. 1999;190(6):875–80 First description of role of GM-CSF in pathogenesis of autoimmune PAP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kitamura T, Uchida K, Tanaka N, Tsuchiya T, Watanabe J, Yamada Y, et al. Serological diagnosis of idiopathic pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2000;162(2 Pt 1):658–62.

    Article  CAS  PubMed  Google Scholar 

  57. Uchida K, Nakata K, Carey B, Chalk C, Suzuki T, Sakagami T, et al. Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis. J Immunol Methods. 2014;402(1–2):57–70.

    Article  CAS  PubMed  Google Scholar 

  58. Ishii H, Trapnell BC, Tazawa R, Inoue Y, Akira M, Kogure Y, et al. Comparative study of high-resolution CT findings between autoimmune and secondary pulmonary alveolar proteinosis. Chest. 2009;136(5):1348–55.

    Article  PubMed  Google Scholar 

  59. Holbert JM, Costello P, Li W, Hoffman RM, Rogers RM. CT features of pulmonary alveolar proteinosis. AJR Am J Roentgenol. 2001;176(5):1287–94.

    Article  CAS  PubMed  Google Scholar 

  60. Rossi SE, Erasmus JJ, Volpacchio M, Franquet T, Castiglioni T, McAdams HP. “Crazy-paving” pattern at thin-section CT of the lungs: radiologic-pathologic overview. Radiographics. 2003;23(6):1509–19.

    Article  PubMed  Google Scholar 

  61. Mehrian P, Homayounfar N, Karimi MA, Jafarzadeh H. Features of idiopathic pulmonary alveolar proteinosis in high resolution computed tomography. Pol J Radiol. 2014;79:65–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Akira M, Inoue Y, Arai T, Sugimoto C, Tokura S, Nakata K, et al. Pulmonary fibrosis on high-resolution CT of patients with pulmonary alveolar proteinosis. AJR Am J Roentgenol. 2016;207(3):544–51.

    Article  PubMed  Google Scholar 

  63. Burkhalter A, Silverman JF, Hopkins MB, Geisinger KR. Bronchoalveolar lavage cytology in pulmonary alveolar proteinosis. Am J Clin Pathol. 1996;106(4):504–10.

    Article  CAS  PubMed  Google Scholar 

  64. Sanyal S, Crawford JA, Abraham JL. Overlooked role of histopathology in evaluations for occupational/environmental exposures. Am J Respir Crit Care Med. 2020;201(12):1581.

  65. Jolly AT, Klees JE, Pacheco KA, Guidotti TL, Kipen HM, Biggs JJ, et al. Work-related asthma. J Occup Environ Med. 2015;57(10):e121–9.

    Article  CAS  PubMed  Google Scholar 

  66. Cummings KJ, Suarthana E, Edwards N, Liang X, Stanton ML, Day GA, et al. Serial evaluations at an indium-tin oxide production facility. Am J Ind Med. 2013;56(3):300–7.

    Article  CAS  PubMed  Google Scholar 

  67. Chauhan S, Sharma KP, Bisoi AK, Pangeni R, Madan K, Chauhan YS. Management of pulmonary alveolar proteinosis with whole lung lavage using extracorporeal membrane oxygenation support in a postrenal transplant patient with graft failure. Ann Card Anaesth. 2016;19(2):379–82.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campo I, Luisetti M, Griese M, Trapnell BC, Bonella F, Grutters J, et al. Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures. Orphanet J Rare Dis. 2016;11(1):115–016.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gay P, Wallaert B, Nowak S, Yserbyt J, Anevlavis S, Hermant C, et al. Efficacy of whole-lung lavage in pulmonary alveolar proteinosis: a multicenter international study of GELF. Respiration. 2017;93(3):198–206.

    Article  PubMed  Google Scholar 

  70. Tazawa R, Trapnell BC, Inoue Y, Arai T, Takada T, Nasuhara Y, et al. Inhaled granulocyte/macrophage-colony stimulating factor as therapy for pulmonary alveolar proteinosis. Am J Respir Crit Care Med. 2010;181(12):1345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wylam ME, Ten R, Prakash UB, Nadrous HF, Clawson ML, Anderson PM. Aerosol granulocyte-macrophage colony-stimulating factor for pulmonary alveolar proteinosis. Eur Respir J. 2006;27(3):585–93.

    Article  CAS  PubMed  Google Scholar 

  72. Venkateshiah SB, Yan TD, Bonfield TL, Thomassen MJ, Meziane M, Czich C, et al. An open-label trial of granulocyte macrophage colony stimulating factor therapy for moderate symptomatic pulmonary alveolar proteinosis. Chest. 2006;130(1):227–37.

    Article  CAS  PubMed  Google Scholar 

  73. Akasaka K, Tanaka T, Kitamura N, Ohkouchi S, Tazawa R, Takada T, et al. Outcome of corticosteroid administration in autoimmune pulmonary alveolar proteinosis: a retrospective cohort study. BMC Pulm Med. 2015;15:88–015.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kavuru MS, Malur A, Marshall I, Barna BP, Meziane M, Huizar I, et al. An open-label trial of rituximab therapy in pulmonary alveolar proteinosis. Eur Respir J. 2011;38(6):1361–7.

    Article  CAS  PubMed  Google Scholar 

  75. Jezequel A, Kerjouan M, Lederlin M, Laine-Caroff C, Camus C, Delaval P, et al. Plasmapheresis failure in the treatment of auto-immune pulmonary alveolar proteinosis. Rev Mal Respir. 2017;34(3):240–3.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Environmental and Occupational Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Cummings, K.J. Pulmonary Alveolar Proteinosis Secondary to Occupational Exposure. Curr Pulmonol Rep 10, 30–39 (2021). https://doi.org/10.1007/s13665-021-00267-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-021-00267-1

Keywords

Navigation