Skip to main content

Nontuberculous Mycobacteria Infection: Source and Treatment

Abstract

Purpose of Review

This review offers current understanding of the source of nontuberculous mycobacteria (NTM) infections especially in relation to engineered water systems. It provides a summary of current treatment methods and highlights novel treatment options being developed.

Recent Findings

Nontuberculous mycobacteria (NTM) infections are thought to originate from inhalation or aspiration of NTM from contaminated drinking water. While significant NTM metagenomics analysis and culturing of environmental samples have been performed, the bias of culture independent and dependent techniques along with the ubiquity of NTM organisms in the environment has made connecting the pathogen reservoir and route of transmission difficult. Recent advances in NTM DNA extraction protocols and NTM high-throughput sequencing methods suggest inhalation and aspiration of drinking water remain a critical route of transmission.

Summary

The development of pulmonary diseases associated with NTM infections is complex. Patients with CF and non-CF bronchiectasis are susceptible to NTM infections, whereas the development of bronchiectasis may be due to long-term exposure to NTM. Source attribution of NTM infections is critical, especially if the source includes engineered water systems such as drinking water distribution networks and clinical and non-clinical premise plumbing. However, source identification requires more work. Current NTM treatment therapies were developed for other indications. New and combined therapies are being developed, but are insufficient to address growing antibiotic resistance and diversity of NTM infections.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Strollo SE, Adjemian J, Adjemian MK, Prevots DR. The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann Am Thorac Soc. 2015;12(10):1458–64. https://doi.org/10.1513/AnnalsATS.201503-173OC.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008–2013. Ann Am Thorac Soc. 2016;13(12):2143–50. https://doi.org/10.1513/AnnalsATS.201605-353OC.

    Article  PubMed  Google Scholar 

  3. Jones MM, Winthrop KL, Nelson SD, Duvall SL, Patterson OV, Nechodom KE, et al. Epidemiology of nontuberculous mycobacterial infections in the U.S. Veterans Health Administration. PLoS One. 2018;13(6):e0197976. https://doi.org/10.1371/journal.pone.0197976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Collier SA, Stockman LJ, Hicks LA, Garrison LE, Zhou FJ, Beach MJ. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol Infect. 2012;140(11):2003–13. https://doi.org/10.1017/S0950268811002858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Dowdell K, Haig SJ, Caverly LJ, Shen Y, LiPuma JJ, Raskin L. Nontuberculous mycobacteria in drinking water systems - the challenges of characterization and risk mitigation. Curr Opin Biotechnol. 2019;57:127–36. https://doi.org/10.1016/j.copbio.2019.03.010Dowdell et al. highlight the difficulty of identifying pathogenic NTM in drinking water supplies. This review summarizes additional hurdles required to connect the organisms responsible for patient infection with the source of the infection.

    Article  CAS  PubMed  Google Scholar 

  6. Kim SY, Shin SH, Moon SM, Yang B, Kim H, Kwon OJ, et al. Distribution and clinical significance of Mycobacterium avium complex species isolated from respiratory specimens. Diagn Microbiol Infect Dis. 2017;88(2):125–37. https://doi.org/10.1016/j.diagmicrobio.2017.02.017.

    Article  PubMed  Google Scholar 

  7. Farnia P, Farnia P, Ghanavi J, Velayati AA. Epidemiological distribution of nontuberculous mycobacteria using geographical information system. Nontuberculous Mycobacteria (NTM). Elsevier. 2019:191–321.

  8. Yano H, Iwamoto T, Nishiuchi Y, Nakajima C, Starkova DA, Mokrousov I, et al. Population structure and local adaptation of MAC lung disease agent Mycobacterium avium subsp. hominissuis. Genome Biol Evol. 2017;9(9):2403–17. https://doi.org/10.1093/gbe/evx183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee MR, Sheng WH, Hung CC, Yu CJ, Lee LN, Hsueh PR. Mycobacterium abscessus complex infections in humans. Emerg Infect Dis. 2015;21(9):1638–46. https://doi.org/10.3201/2109.141634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tortoli E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect. 2009;15(10):906–10. https://doi.org/10.1111/j.1469-0691.2009.03014.x.

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Santiago TM, Drage LA. Nontuberculous mycobacteria: skin and soft tissue infections. Dermatol Clin. 2015;33(3):563–77. https://doi.org/10.1016/j.det.2015.03.017.

    Article  CAS  PubMed  Google Scholar 

  12. Loizos A, Soteriades ES, Pieridou D, Koliou MG. Lymphadenitis by non-tuberculous mycobacteria in children. Pediatr Int. 2018;60(12):1062–7. https://doi.org/10.1111/ped.13708.

    Article  PubMed  Google Scholar 

  13. Haverkamp MH, Arend SM, Lindeboom JA, Hartwig NG, van Dissel JT. Nontuberculous mycobacterial infection in children: a 2-year prospective surveillance study in the Netherlands. Clin Infect Dis. 2004;39(4):450–6. https://doi.org/10.1086/422319.

    Article  PubMed  Google Scholar 

  14. Tebruegge M, Pantazidou A, MacGregor D, Gonis G, Leslie D, Sedda L, et al. Nontuberculous mycobacterial disease in children - epidemiology, diagnosis & management at a tertiary center. PLoS One. 2016;11(1):e0147513. https://doi.org/10.1371/journal.pone.0147513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous Mycobacterium. Science. 2016;354(6313):751–7. https://doi.org/10.1126/science.aaf8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Wassilew N, Hoffmann H, Andrejak C, Lange C. Pulmonary disease caused by non-tuberculous mycobacteria. Respiration. 2016;91(5):386–402. https://doi.org/10.1159/000445906Wassilew et al. provide an excellent review on the epidemiology of NTM pulmonary disease, review of known risk factors for mycobacterial infection, and provide a thorough and comprehensive review of treatment recommendations for common NTM clinical scenarios.

    Article  CAS  PubMed  Google Scholar 

  17. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13. https://doi.org/10.1183/09031936.00149212.

    Article  PubMed  Google Scholar 

  18. Larsson LO, Polverino E, Hoefsloot W, Codecasa LR, Diel R, Jenkins SG, et al. Pulmonary disease by non-tuberculous mycobacteria - clinical management, unmet needs and future perspectives. Expert Rev Respir Med. 2017;11(12):977–89. https://doi.org/10.1080/17476348.2017.1386563.

    Article  CAS  PubMed  Google Scholar 

  19. Nishiuchi Y, Iwamoto T, Maruyama F. Infection sources of a common non-tuberculous mycobacterial pathogen, Mycobacterium avium complex. Front Med (Lausanne). 2017;4(27):27. https://doi.org/10.3389/fmed.2017.00027.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Donohue MJ, King D, Pfaller S, Mistry JH. The sporadic nature of Legionella pneumophila, Legionella pneumophila Sg1 and Mycobacterium avium occurrence within residences and office buildings across 36 states in the United States. J Appl Microbiol. 2019;126(5):1568–79. https://doi.org/10.1111/jam.14196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Loret JF, Dumoutier N. Non-tuberculous mycobacteria in drinking water systems: a review of prevalence data and control means. Int J Hyg Environ Health. 2019;222(4):628–34. https://doi.org/10.1016/j.ijheh.2019.01.002.

    Article  PubMed  Google Scholar 

  22. Donohue MJ, Mistry JH, Donohue JM, O’Connell K, King D, Byran J, et al. Increased frequency of nontuberculous mycobacteria detection at potable water taps within the United States. Environ Sci Technol. 2015;49(10):6127–33. https://doi.org/10.1021/acs.est.5b00496.

    Article  CAS  PubMed  Google Scholar 

  23. Gomez-Smith CK, LaPara TM, Hozalski RM. Sulfate reducing bacteria and mycobacteria dominate the biofilm communities in a chloraminated drinking water distribution system. Environ Sci Technol. 2015;49(14):8432–40. https://doi.org/10.1021/acs.est.5b00555.

    Article  CAS  PubMed  Google Scholar 

  24. Wallace RJ Jr, Iakhiaeva E, Williams MD, Brown-Elliott BA, Vasireddy S, Vasireddy R, et al. Absence of Mycobacterium intracellulare and presence of Mycobacterium chimaera in household water and biofilm samples of patients in the United States with Mycobacterium avium complex respiratory disease. J Clin Microbiol. 2013;51(6):1747–52. https://doi.org/10.1128/JCM.00186-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaerewijck MJ, Huys G, Palomino JC, Swings J, Portaels F. Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev. 2005;29(5):911–34. https://doi.org/10.1016/j.femsre.2005.02.001.

    Article  CAS  PubMed  Google Scholar 

  26. Honda JR, Hasan NA, Davidson RM, Williams MD, Epperson LE, Reynolds PR, et al. Environmental nontuberculous mycobacteria in the Hawaiian Islands. PLoS Negl Trop Dis. 2016;10(10):e0005068. https://doi.org/10.1371/journal.pntd.0005068.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Falkinham JO 3rd. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17(3):419–24. https://doi.org/10.3201/eid1703.101510.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Thomson R, Tolson C, Carter R, Coulter C, Huygens F, Hargreaves M. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J Clin Microbiol. 2013;51(9):3006–11. https://doi.org/10.1128/JCM.00899-13.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamilton LA, Falkinham JO. 3rd. Aerosolization of Mycobacterium avium and Mycobacterium abscessus from a household ultrasonic humidifier. J Med Microbiol. 2018;67(10):1491–5. https://doi.org/10.1099/jmm.0.000822.

    Article  CAS  PubMed  Google Scholar 

  30. Mullis SN, Falkinham JO 3rd. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2013;115(3):908–14. https://doi.org/10.1111/jam.12272.

    Article  CAS  PubMed  Google Scholar 

  31. Falkinham JO 3rd. Mycobacterium avium complex: adherence as a way of life. AIMS Microbiol. 2018;4(3):428–38. https://doi.org/10.3934/microbiol.2018.3.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev. 2004;17(2):413–33. https://doi.org/10.1128/cmr.17.2.413-433.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kotlarz N, Rockey N, Olson TM, Haig SJ, Sanford L, LiPuma JJ, et al. Biofilms in full-scale drinking water ozone contactors contribute viable bacteria to ozonated water. Environ Sci Technol. 2018;52(5):2618–28. https://doi.org/10.1021/acs.est.7b04212.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor RH, Falkinham JO 3rd, Norton CD, LeChevallier MW. Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol. 2000;66(4):1702–5. https://doi.org/10.1128/aem.66.4.1702-1705.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Sui M, Yuan B, Li H, Lu H. Inactivation of two mycobacteria by free chlorine: effectiveness, influencing factors, and mechanisms. Sci Total Environ. 2019;648:271–84. https://doi.org/10.1016/j.scitotenv.2018.07.451.

    Article  CAS  PubMed  Google Scholar 

  36. Norton CD, LeChevallier MW, Falkinham JO 3rd. Survival of Mycobacterium avium in a model distribution system. Water Res. 2004;38(6):1457–66. https://doi.org/10.1016/j.watres.2003.07.008.

    Article  CAS  PubMed  Google Scholar 

  37. Lewis AH, Falkinham JO 3rd. Microaerobic growth and anaerobic survival of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium scrofulaceum. Int J Mycobacteriol. 2015;4(1):25–30. https://doi.org/10.1016/j.ijmyco.2014.11.066.

    Article  PubMed  Google Scholar 

  38. Cirillo JD, Falkow S, Tompkins LS, Bermudez LE. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun. 1997;65(9):3759–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Norton GJ, Virdi R, Epperson E, Hasan NA, Bai X, Strong M, et al. Mycobacterium avium hominissuis virulence and genomic adaptations after long-term co-culture in Acanthamoeba. NTM: Am J Resp Crit Care Med. 2019:A2045-A.

  40. Schiavano GF, De Santi M, Sisti M, Amagliani G, Brandi G. Disinfection of Mycobacterium avium subspecies hominissuis in drinking tap water using ultraviolet germicidal irradiation. Environ Technol. 2018;39(24):3221–7. https://doi.org/10.1080/09593330.2017.1375028.

    Article  CAS  PubMed  Google Scholar 

  41. Perrott P, Turgeon N, Gauthier-Levesque L, Duchaine C. Preferential aerosolization of bacteria in bioaerosols generated in vitro. J Appl Microbiol. 2017;123(3):688–97. https://doi.org/10.1111/jam.13514.

    Article  CAS  PubMed  Google Scholar 

  42. Gauthier-Levesque L, Bonifait L, Turgeon N, Veillette M, Perrott P, Grenier D, et al. Impact of serotype and sequence type on the preferential aerosolization of Streptococcus suis. BMC Res Notes. 2016;9:273. https://doi.org/10.1186/s13104-016-2073-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mathieu L, Bertrand I, Abe Y, Angel E, Block JC, Skali-Lami S, et al. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress. Water Res. 2014;55:175–84. https://doi.org/10.1016/j.watres.2014.01.054.

    Article  CAS  PubMed  Google Scholar 

  44. Schwake DO, Garner E, Strom OR, Pruden A, Edwards MA. Legionella DNA markers in tap water coincident with a spike in Legionnaires’ disease in Flint, MI. Environ Sci Technol Lett. 2016;3(9):311–5. https://doi.org/10.1021/acs.estlett.6b00192.

    Article  CAS  Google Scholar 

  45. Shukla MA, Woc-Colburn L, Weatherhead JE. Infectious diseases in the aftermath of hurricanes in the United States. Curr Trop Med Reports. 2018;5(4):217–23. https://doi.org/10.1007/s40475-018-0162-6.

    Article  Google Scholar 

  46. • Haig SJ, Kotlarz N, JJ LP, Raskin L. A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium. MBio. 2018;9(1):e02354–17. https://doi.org/10.1128/mBio.02354-17Highlights new methods for extracting higher quantities of NTM DNA while showing longer water age in distribution systems correlated with higher abundance ofM. aviumsubsp.avium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Richards CL, Broadaway SC, Eggers MJ, Doyle J, Pyle BH, Camper AK, et al. Detection of pathogenic and non-pathogenic bacteria in drinking water and associated biofilms on the Crow Reservation, Montana. USA. Microb Ecol. 2018;76(1):52–63. https://doi.org/10.1007/s00248-015-0595-6.

    Article  CAS  PubMed  Google Scholar 

  48. Li T, Abebe LS, Cronk R, Bartram J. A systematic review of waterborne infections from nontuberculous mycobacteria in health care facility water systems. Int J Hyg Environ Health. 2017;220(3):611–20. https://doi.org/10.1016/j.ijheh.2016.12.002.

    Article  PubMed  Google Scholar 

  49. Hull NM, Holinger EP, Ross KA, Robertson CE, Harris JK, Stevens MJ, et al. Longitudinal and source-to-tap New Orleans, LA, U.S.A. drinking water microbiology. Environ Sci Technol. 2017;51(8):4220–9. https://doi.org/10.1021/acs.est.6b06064.

    Article  CAS  PubMed  Google Scholar 

  50. Casini B, Buzzigoli A, Cristina ML, Spagnolo AM, Del Giudice P, Brusaferro S, et al. Long-term effects of hospital water network disinfection on Legionella and other waterborne bacteria in an Italian university hospital. Infect Control Hosp Epidemiol. 2014;35(3):293–9. https://doi.org/10.1086/675280.

    Article  PubMed  Google Scholar 

  51. Perkins KM, Reddy SC, Fagan R, Arduino MJ, Perz JF. Investigation of healthcare infection risks from water-related organisms: summary of CDC consultations, 2014-2017. Infect Control Hosp Epidemiol. 2019;40(6):621–6. https://doi.org/10.1017/ice.2019.60.

    Article  PubMed  Google Scholar 

  52. Kanamori H, Weber DJ, Rutala WA. Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin Infect Dis. 2016;62(11):1423–35. https://doi.org/10.1093/cid/ciw122.

    Article  PubMed  Google Scholar 

  53. Shakoor S, Owais M, Hasan R, Irfan S. Nosocomial and healthcare-associated NTM infections and their control. Nontuberculous Mycobacteria (NTM). Elsevier. 2019:177–90.

  54. Ninh A, Weiner M, Goldberg A. Healthcare-associated Mycobacterium chimaera infection subsequent to heater-cooler device exposure during cardiac surgery. J Cardiothorac Vasc Anesth. 2017;31(5):1831–5. https://doi.org/10.1053/j.jvca.2017.05.028.

    Article  PubMed  Google Scholar 

  55. Sebakova H, Kozisek F, Mudra R, Kaustova J, Fiedorova M, Hanslikova D, et al. Incidence of nontuberculous mycobacteria in four hot water systems using various types of disinfection. Can J Microbiol. 2008;54(11):891–8. https://doi.org/10.1139/w08-080.

    Article  CAS  PubMed  Google Scholar 

  56. • Falkinham JO 3rd. Challenges of NTM drug development. Front Microbiol. 2018;9:1613. https://doi.org/10.3389/fmicb.2018.01613Falkinham highlights unique characteristics of NTM organisms that require consideration when developing antimicrobial therapies.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416. https://doi.org/10.1164/rccm.200604-571ST.

    Article  CAS  PubMed  Google Scholar 

  58. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1–ii64. https://doi.org/10.1136/thoraxjnl-2017-210927.

    Article  PubMed  Google Scholar 

  59. Mahboubi MA, Carmody LA, Foster BK, Kalikin LM, VanDevanter DR, LiPuma JJ. Culture-based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens. J Clin Microbiol. 2016;54(3):613–9. https://doi.org/10.1128/JCM.02299-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. • Wu UI, Holland SM. Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 2015;15(8):968–80. https://doi.org/10.1016/S1473-3099(15)00089-4Wu and Holland offer a nice review of the host defense mechanisms against mycobacterial infections and include information on those with immunodeficiencies, in whom focal and disseminated mycobacterial infections can occur.

    Article  CAS  Google Scholar 

  61. Chalmers JD. New insights into the epidemiology of bronchiectasis. Chest. 2018;154(6):1272–3. https://doi.org/10.1016/j.chest.2018.08.1051.

    Article  PubMed  Google Scholar 

  62. Reich JM. Non-TB mycobacterial infection-bronchiectasis nexus. Chest. 2019;155(6):1301–2. https://doi.org/10.1016/j.chest.2019.01.037.

    Article  PubMed  Google Scholar 

  63. Bonaiti G, Pesci A, Marruchella A, Lapadula G, Gori A, Aliberti S. Nontuberculous mycobacteria in noncystic fibrosis bronchiectasis. Biomed Res Int. 2015;2015:197950. https://doi.org/10.1155/2015/197950.

    Article  PubMed  PubMed Central  Google Scholar 

  64. King PT. The pathophysiology of bronchiectasis. Int J Chron Obstruct Pulmon Dis. 2009;4:411–9.

    Article  Google Scholar 

  65. Jonsson BE, Bylund J, Johansson BR, Telemo E, Wold AE. Cord-forming mycobacteria induce DNA meshwork formation by human peripheral blood mononuclear cells. Pathog Dis. 2013;67(1):54–66. https://doi.org/10.1111/2049-632X.12007Neutrophils predominate in the defense against extracellular bacteria such as nontuberculous mycobacteria. Organism such asMycobacterium abscessuscan exhibit smooth or rough colony phenotypes. Jönsson et al. review how aggregates of thousands of bacteria, grouped together and surrounded by DNA mesh work, can form a rough phenotype and avoid successful phagocytosis.

    Article  CAS  PubMed  Google Scholar 

  66. Qvist T, Pressler T, Hoiby N, Katzenstein TL. Shifting paradigms of nontuberculous mycobacteria in cystic fibrosis. Respir Res. 2014;15(1):41. https://doi.org/10.1186/1465-9921-15-41.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Esteban J, Garcia-Coca M. Mycobacterium biofilms. Front Microbiol. 2017;8(2651):2651. https://doi.org/10.3389/fmicb.2017.02651.

    Article  PubMed  Google Scholar 

  68. Johnston JC, Chiang L, Elwood K. Mycobacterium kansasii. Microbiol Spectr. 2017;5(1). https://doi.org/10.1128/microbiolspec.TNMI7-0011-2016.

  69. Wu ML, Aziz DB, Dartois V, Dick T. NTM drug discovery: status, gaps and the way forward. Drug Discov Today. 2018;23(8):1502–19. https://doi.org/10.1016/j.drudis.2018.04.001.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Griffith DE. Treatment of Mycobacterium avium complex (MAC). Semin Respir Crit Care Med. 2018;39(3):351–61. https://doi.org/10.1055/s-0038-1660472.

    Article  PubMed  Google Scholar 

  71. Wallace RJ Jr, Zhang Y, Brown-Elliott BA, Yakrus MA, Wilson RW, Mann L, et al. Repeat positive cultures in Mycobacterium intracellulare lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. J Infect Dis. 2002;186(2):266–73. https://doi.org/10.1086/341207.

    Article  CAS  PubMed  Google Scholar 

  72. Kang HK, Park HY, Kim D, Jeong BH, Jeon K, Cho JH, et al. Treatment outcomes of adjuvant resectional surgery for nontuberculous mycobacterial lung disease. BMC Infect Dis. 2015;15(1):76. https://doi.org/10.1186/s12879-015-0823-1.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mitchell JD, Yu JA, Bishop A, Weyant MJ, Pomerantz M. Thoracoscopic lobectomy and segmentectomy for infectious lung disease. Ann Thorac Surg. 2012;93(4):1033–9; discussion 9-40. https://doi.org/10.1016/j.athoracsur.2012.01.012.

    Article  PubMed  Google Scholar 

  74. Koh WJ, Kim YH, Kwon OJ, Choi YS, Kim K, Shim YM, et al. Surgical treatment of pulmonary diseases due to nontuberculous mycobacteria. J Korean Med Sci. 2008;23(3):397–401. https://doi.org/10.3346/jkms.2008.23.3.397.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brown-Elliott BA, Rubio A, Wallace RJ Jr. In vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria. Antimicrob Agents Chemother. 2018;62(11):e01503–18. https://doi.org/10.1128/AAC.01503-18.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59. https://doi.org/10.1128/AAC.45.3.649-659.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–3. https://doi.org/10.1038/s41591-019-0437-zDedrick et al. provide evidence of the effectiveness of NTM phage treatment. Phage treatment halted advancement of a disseminated, antibiotic-resistant MAB infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Faruque SM, Islam MJ, Ahmad QS, Faruque AS, Sack DA, Nair GB, et al. Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage. Proc Natl Acad Sci U S A. 2005;102(17):6119–24. https://doi.org/10.1073/pnas.0502069102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JMH and SW had the idea for the article. JMH, YZ, and SW performed the literature search. JMH, YZ, and SW drafted and critically revised the work.

Corresponding author

Correspondence to Justin M. Hutchison.

Ethics declarations

Conflict of Interest

Ya Zhang, Stephen Waller, and Justin M. Hutchison declare no conflict of interest. The multicenter prospective trial comparing two- and three-drug therapy is supported by the Patient Centered Outcomes Research institute (PCORI).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bronchiectasis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hutchison, J.M., Zhang, Y. & Waller, S. Nontuberculous Mycobacteria Infection: Source and Treatment. Curr Pulmonol Rep 8, 151–159 (2019). https://doi.org/10.1007/s13665-019-00237-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-019-00237-8

Keywords

  • Bronchiectasis
  • NTM
  • Drinking water
  • Cystic fibrosis