NSCLC: State of the Art Diagnosis, Treatment, and Outcomes

  • Gerard Chaaya
  • Ramsy Abdelghani
  • Fayez Kheir
  • Takefumi Komiya
  • Nancy Vander Velde
Lung Cancer (R Mudad, Section Editor)
  • 42 Downloads
Part of the following topical collections:
  1. Topical Collection on Lung Cancer

Abstract

Purpose of Review

Lung cancer is the major cause of cancer mortality in the USA. In this review, we aim to provide a general update on the current status of non-small cell lung cancer (NSCLC) management.

Recent Findings

Novel approaches in the diagnosis and treatment of non-small cell lung cancer have been made recently and this was revolutionary in the way lung cancer management has changed even-though the improvement in overall survival remains modest. Furthermore, lung cancer screening using low-dose computed tomography scan has shown benefit in high-risk populations.

Summary

The diagnosis of lung cancer has evolved over the last couple of years with the new endoscopic modalities. Targeted therapies and immunotherapies, including tyrosine kinase inhibitors and checkpoint inhibitors, constitutes the current progress made in the treatment of lung cancer, and have helped improve survival in the metastatic setting. Many trials are ongoing in investigating other biomarkers.

Keywords

Non-small cell lung cancer Diagnosis Endobronchial ultrasound Molecular studies Targeted therapy Immunotherapy 

Notes

Compliance with Ethical Standards

Conflict of Interest

Gerard Chaaya, Ramsy Abdelghani, Fayez Kheir, Takefumi Komiya, and Nancy Vander Velde declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016;893:1–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Johnson DH, Schiller JH, Bunn PA Jr. Recent clinical advances in lung cancer management. J Clin Oncol. 2014;32(10):973–82.CrossRefPubMedGoogle Scholar
  3. 3.
    Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e1S–e29S.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100(Pt C):11–465.PubMedCentralGoogle Scholar
  5. 5.
    National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395–409.CrossRefGoogle Scholar
  6. 6.
    Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. WHO classification of tumours of the lung, pleura, thymus and heart, vol. 7. Lyon: International Agency for Research on Cancer; 2015. p. 412.Google Scholar
  7. 7.
    Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31(8):992–1001.CrossRefPubMedGoogle Scholar
  8. 8.
    Finkelstein DM, Ettinger DS, Ruckdeschel JC. Long-term survivors in metastatic non-small-cell lung cancer: an eastern cooperative oncology group study. J Clin Oncol. 1986;4(5):702–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Travis WD, Rekhtman N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: strategic management of tissue for molecular testing. Semin Respir Crit Care Med. 2011;32(1):22–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Ye J, Findeis-Hosey JJ, Yang Q, McMahon LA, Yao JL, Li F, et al. Combination of napsin A and TTF-1 immunohistochemistry helps in differentiating primary lung adenocarcinoma from metastatic carcinoma in the lung. Appl Immunohistochem Mol Morphol. 2011;19(4):313–7.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer—diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence based clinical practice guidelines. Chest. 2017;143(Suppl):e211S–50S. American College of Chest Physicians Guidelines for Staging Non-small cell lung cancer. Google Scholar
  12. 12.
    Islam S, Walker RC. Advanced imaging (positron emission tomography and magnetic resonance imaging) and image-guided biopsy in initial staging and monitoring of therapy of lung cancer. Cancer J. 2013;19:208–16.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yi CA, Shin KM, Lee KS, Kim BT, Kim H, Kwon OJ, et al. Non-small cell lung cancer staging: efficacy comparison of integrated PET/CT versus 3.0-T whole-body MR imaging. Radiology. 2008;248:632–42.CrossRefPubMedGoogle Scholar
  14. 14.
    •• Wahidi MM, Herth F, Yasufuku K, Shepherd RW, Yarmus L, Chawla M, et al. Technical aspects of endobronchial ultrasound-guided transbronchial needle aspiration: CHEST guideline and expert panel report. Chest. 2016;149(3):816–35. American College of Chest Physicians Guidelines for Endobronchial Ultrasound and Transbronchial Needle Aspiration. CrossRefPubMedGoogle Scholar
  15. 15.
    Yasufuku K, Pierre A, Darling G, de Perrot M, Waddell T, Johnston M, et al. A prospective controlled trial of endobronchial ultrasound-guided transbronchial needle aspiration compared with mediastinoscopy for mediastinal lymph node staging of lung cancer. J Thorac Cardiovasc Surg. 2011;142(6):1393–1400.e1.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee BE, Kletsman E, Rutledge JR, Korst RJ. Utility of endobronchial ultrasound-guided mediastinal lymph node biopsy in patients with non-small cell lung cancer. J Thorac Cardiovasc Surg. 2012;143(3):585–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Eapen GA, Shah AM, Lei X, Jimenez CA, Morice RC, Yarmus L, et al. Complications, consequences, and practice patterns of endobronchial ultrasound-guided transbronchial needle aspiration: results of the AQuIRE registry. Chest. 2013;143(4):1044–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, et al. Treatment of stage III non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e314S–40S.CrossRefPubMedGoogle Scholar
  19. 19.
    Detterbeck F, Puchalski J, Rubinowitz A, Cheng D. Classification of the thoroughness of mediastinal staging of lung cancer. Chest. 2010;137(2):436–42.CrossRefPubMedGoogle Scholar
  20. 20.
    De Leyn P, Dooms C, Kuzdzal J, Lardinois D, Passlick B, Rami-Porta R, et al. Revised ESTS guidelines for preoperative mediastinal lymph node staging for non-small-cell lung cancer. Eur J Cardiothorac Surg. 2014;45(5):787–98.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee HS, Lee GK, Lee HS, Kim MS, Lee JM, Kim HY, et al. Real-time endobronchial ultrasound-guided transbronchial needle aspiration in mediastinal staging of non-small cell lung cancer: how many aspirations per target lymph node station? Chest. 2008;134(2):368–74.CrossRefPubMedGoogle Scholar
  22. 22.
    Oki M, Saka H, Kitagawa C, Kogure Y, Murata N, Ichihara S, et al. Randomized study of 21-gauge versus 22-gauge endobronchial ultrasound-guided transbronchial needle aspiration needles for sampling histology specimens. J Bronchology Interv Pulmonol. 2011;18(4):306–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Tyan C, Patel P, Czarnecka K, Gompelmann D, Eberhardt R, Fortin M, et al. Flexible 19-gauge endobronchial ultrasound-guided transbronchial needle aspiration needle: first experience. Respiration. 2017;94(1):52–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Bhattarai B, Egan J, Seides B, Greenhill S, Kovitz K, Desai N. Safety and efficacy of endobronchial ultrasound-guided transbronchial aspiration using a 19-gauge needle. Chest. 2017;152((4):A959.CrossRefGoogle Scholar
  25. 25.
    Casal RF, Staerkel GA, Ost D, Almeida FA, Uzbeck MH, Eapen GA, et al. Randomized clinical trial of endobronchial ultrasound needle biopsy with and without aspiration. Chest. 2012;142(3):568–73.CrossRefPubMedGoogle Scholar
  26. 26.
    •• van der Heijden EH, Casal RF, Trisolini R, Steinfort DP, Hwangbo B, Nakajima T, et al. Guideline for the acquisition and preparation of conventional and endobronchial ultrasound-guided transbronchial needle aspiration specimens for the diagnosis and molecular testing of patients with known or suspected lung cancer. Respiration. 2014;88(6):500–17. Guidelines for cytological preparation of EBUS -TBNA specimens. CrossRefPubMedGoogle Scholar
  27. 27.
    Diacon AH, Schuurmans MM, Theron J, Louw M, Wright CA, Brundyn K, et al. Utility of rapid on-site evaluation of transbronchial needle aspirates. Respiration. 2005;72(2):182–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Oki M, Saka H, Kitagawa C, Kogure Y, Murata N, Adachi T, et al. Rapid on-site cytologic evaluation during endobronchial ultrasound-guided transbronchial needle aspiration for diagnosing lung cancer: a randomized study. Respiration. 2013;85(6):486–92.CrossRefPubMedGoogle Scholar
  29. 29.
    •• Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker E, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association of Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–46. The College of American Pathologists guidelines for molecular testing in lung cancer specimens. CrossRefPubMedGoogle Scholar
  30. 30.
    Yarmus L, Akulian J, Gilbert C, Feller-Kopman D, Lee HJ, Zarogoulidis P, et al. Optimizing endobronchial ultrasound for molecular analysis. How many passes are needed? Ann Am Thorac Soc. 2013;10(6):636–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Fischer AH, Cibas ES, Howell LP, Kurian EM, Laucirica R, Moriarty AT, et al. Role of cytology in the management of non-small-cell lung cancer. J Clin Oncol. 2011;29(24):3331–3.CrossRefPubMedGoogle Scholar
  32. 32.
    Shaw AT, Ou SH, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18(3):378–81.CrossRefPubMedGoogle Scholar
  34. 34.
    Klempner SJ, Borghei A, Hakimian B, Ali SM, Ou SI. Intracranial activity of Cabozantinib in MET exon 14-positive NSCLC with brain metastases. J Thorac Oncol. 2017;12(1):152–6.CrossRefPubMedGoogle Scholar
  35. 35.
    •• Planchard D, Kim TM, Mazieres J, Quoix E, Riely G, Barlesi F, et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17(5):642–50. A recent phase 2 open-label study, showed clinical activity of dabrafenib in BRAF(V600E)-positive NSCLC with limited therapeutic options. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    • Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9. A recent report identifying diverse exon 14 splice site alterations in MET that result in oncogenic transformation in vitro, and a meaningful clinical benefit from MET inhibitors. CrossRefPubMedGoogle Scholar
  37. 37.
    Cardarella S, Ogino A, Nishino M, Butaney M, Shen J, Lydon C, et al. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res. 2013;19(16):4532–40.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kelly RJ, Carter CA, Giaccone G. HER2 mutations in non-small-cell lung cancer can be continually targeted. J Clin Oncol. 2012;30(26):3318–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J, et al. Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med. 2005;353(2):133–44.CrossRefPubMedGoogle Scholar
  40. 40.
    • Kumar M, Ernani V, Owonikoko TK. Biomarkers and targeted systemic therapies in advanced non-small cell lung cancer. Mol Aspects Med. 2015;45:55–66. A Recent review on the new molecular advances in NSCLC. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    • Ou SH, Ahn JS, De Petris L, Govindan R, Yang JC, Hughes B, et al. Alectinib in Crizotinib-refractory ALK-rearranged non-small-cell lung Cancer: a phase II global study. J Clin Oncol. 2016;34(7):661–8. A prospective trial that showed the efficacy of alectinib in ALK-positive NSCLC, including those with CNS metastases. CrossRefPubMedGoogle Scholar
  42. 42.
    Douillard JY, Ostoros G, Cobo M, Ciuleanu T, McCormack R, Webster A, et al. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study. Br J Cancer. 2014;110(1):55–62.CrossRefPubMedGoogle Scholar
  43. 43.
    Kerr KM, Bubendorf L, Edelman MJ, Marchetti A, Mok T, Novello S, et al. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann Oncol. 2014;25(9):1681–90.CrossRefPubMedGoogle Scholar
  44. 44.
    • Lindeman NI, Cagle PT, Beasley MB, Chitale DA, Dacic S, Giaccone G, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol. 2013;8(7):823–59. Three literature searches that aimed to establish evidence-based recommendations for the molecular analysis of lung cancers that are required to guide EGFR- and ALK-directed therapies. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Paik PK, Varghese AM, Sima CS, Moreira AL, Ladanyi M, Kris MG, et al. Response to erlotinib in patients with EGFR mutant advanced non-small cell lung cancers with a squamous or squamous-like component. Mol Cancer Ther. 2012;11(11):2535–40.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J, et al. The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet 2008;Chapter 10:Unit 10.11.Google Scholar
  47. 47.
    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:668–84.CrossRefPubMedGoogle Scholar
  48. 48.
    Paik PK, Arcila ME, Fara M, Sima CS, Miller VA, Kris MG, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29(15):2046–51.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gautschi O, Milia J, Cabarrou B, Bluthgen MV, Besse B, Smit EF, et al. Targeted therapy for patients with BRAF-mutant lung cancer: results from the European EURAF cohort. J Thorac Oncol. 2015;10(10):1451–7.CrossRefPubMedGoogle Scholar
  50. 50.
    • Sholl LM, Aisner DL, Varella-Garcia M, Berry LD, Dias-Santagata D, Wistuba II, et al. Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung Cancer mutation consortium experience. J Thorac Oncol. 2015;10(5):768–77. A large study that identified the technical aspects of mutation analysis testing and its clinicopathologic correlation CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Alì G, Proietti A, Pelliccioni S, Niccoli C, Lupi C, Sensi E, et al. ALK rearrangement in a large series of consecutive non-small cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med. 2014;138(11):1449–58.CrossRefPubMedGoogle Scholar
  52. 52.
    Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e278S–313S.CrossRefPubMedGoogle Scholar
  53. 53.
    NSCLC Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet. 2014;383(9928):1561–71.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Magilligan DJ Jr, Duvernoy C, Malik G, Lewis JW Jr, Knighton R, Ausman JI. Surgical approach to lung cancer with solitary cerebral metastasis: twenty-five years' experience. Ann Thorac Surg. 1986;42(4):360–4.CrossRefPubMedGoogle Scholar
  55. 55.
    Darling GE, Allen MS, Decker PA, Ballman K, Malthaner RA, Inculet RI, et al. Randomized trial of mediastinal lymph node sampling versus complete lymphadenectomy during pulmonary resection in the patient with N0 or N1 (less than hilar) non-small cell carcinoma: results of the American college of surgery oncology group Z0030 trial. J Thorac Cardiovasc Surg. 2011;141(3):662–70.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cerfolio RJ, Bryant AS. Survival of patients with unsuspected N2 (stage IIIA) nonsmall-cell lung cancer. Ann Thorac Surg. 2008;86(2):362–6. discussion 366-37CrossRefPubMedGoogle Scholar
  57. 57.
    • Sher DJ, Fidler MJ, Liptay MJ, Koshy M. Comparative effectiveness of neoadjuvant chemoradiotherapy versus chemotherapy alone followed by surgery for patients with stage IIIA non-small cell lung cancer. Lung Cancer. 2015;88(3):267–74. Prospective trial comparing chemoradiotherapy versus chemotherapy alone in patients with stage IIIA. CrossRefPubMedGoogle Scholar
  58. 58.
    Socinski MA, Evans T, Gettinger S, Hensing TA, VanDam SL, Ireland B, et al. Treatment of stage IV non-small cell lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5 Suppl):e341S–68S.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lutz ST, Jones J, Chow E. Role of radiation therapy in palliative care of the patient with cancer. J Clin Oncol. 2014;32(26):2913–9.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McAvoy S, Ciura K, Wei C, Rineer J, Liao Z, Chang JY, et al. Definitive reirradiation for locoregionally recurrent non-small cell lung cancer with proton beam therapy or intensity modulated radiation therapy: predictors of high-grade toxicity and survival outcomes. Int J Radiat Oncol Biol Phys. 2014;90(4):819–27.CrossRefPubMedGoogle Scholar
  61. 61.
    Expert Panel on Radiation Oncology-Brain Metastases, Lo SS, Gore EM, Bradley JD, Buatti JM, Germano I, et al. ACR appropriateness criteria® pre-irradiation evaluation and management of brain metastases. J Palliat Med. 2014;17(8):880–6.CrossRefGoogle Scholar
  62. 62.
    Expert Panel On Radiation Oncology-Bone Metastases, Lutz ST, Lo SS, Chang EL, Galanopoulos N, Howell DD, et al. ACR Appropriateness Criteria® non-spine bone metastases. J Palliat Med. 2012;15(5):521–6.CrossRefGoogle Scholar
  63. 63.
    Chang JY, Kestin LL, Barriger RB, Chetty IJ, Ginsburg ME, Kumar S, et al. ACR Appropriateness Criteria® nonsurgical treatment for locally advanced non-small-cell lung cancer: good performance status/definitive intent. Oncology (Williston Park). 2014;28(8):706–10. 712, 714 passimGoogle Scholar
  64. 64.
    Bakitas MA, El-Jawahri A, Farquhar M, Ferrell B, Grudzen C, Higginson I, et al. The TEAM approach to improving oncology outcomes by incorporating palliative Care in Practice. J Oncol Pract. 2017;13(9):557–66.CrossRefPubMedGoogle Scholar
  65. 65.
    Scagliotti GV, Parikh P, von Pawel J, Biesma B, Vansteenkiste J, Manegold C, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26(21):3543–51.CrossRefPubMedGoogle Scholar
  66. 66.
    Pennell NA. Selection of chemotherapy for patients with advanced non-small cell lung cancer. Cleve Clin J Med. 2012;79(Electronic Suppl 1):eS46–50.PubMedGoogle Scholar
  67. 67.
    Leighl NB. Treatment paradigms for patients with metastatic non-small-cell lung cancer: first-, second-, and third-line. Curr Oncol. 2012;19(Suppl 1):S52–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    •• Patel JD, Socinski MA, Garon EB, Reynolds CH, Spigel DR, Olsen MR, et al. PointBreak: a randomized phase III study of pemetrexed plus carboplatin and bevacizumab followed by maintenance pemetrexed and bevacizumab versus paclitaxel plus carboplatin and bevacizumab followed by maintenance bevacizumab in patients with stage IIIB or IV nonsquamous non-small cell lung cancer. J Clin Oncol. 2013;31(34):4349–57. A large prospective cohort trial comparing pemetrexed-based versus a taxane-based regimens in regard to toxicities and overall survival. CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    • Langer CJ, Socinski MA, Patel JD, Sandler AB, Schiller JH, Leon L, et al. Isolating the Role of Bevacizumab in Elderly Patients With Previously Untreated Nonsquamous Non-Small Cell Lung Cancer: Secondary Analyses of the ECOG 4599 and PointBreak Trials. Am J Clin Oncol. 2016;39(5):441–7. A multivariate analysis comparing regimens with and without bevacizumab in elderly patients with untreated non-squamous non-small cell lung cancer. CrossRefPubMedGoogle Scholar
  70. 70.
    Felip E, Gridelli C, Baas P, Rosell R, Stahel R, Panel Members. Metastatic non-small-cell lung cancer: consensus on pathology and molecular tests, first-line, second-line, and third-line therapy: 1st ESMO consensus conference in lung Cancer; Lugano 2010. Ann Oncol. 2011;22(7):1507–19.CrossRefPubMedGoogle Scholar
  71. 71.
    Lilenbaum R, Villaflor VM, Langer C, O'Byrne K, O'Brien M, Ross HJ, et al. Single-agent versus combination chemotherapy in patients with advanced non-small cell lung cancer and a performance status of 2: prognostic factors and treatment selection based on two large randomized clinical trials. J Thorac Oncol. 2009;4(7):869–74.CrossRefPubMedGoogle Scholar
  72. 72.
    Lilenbaum R, Zukin M, Pereira JR, Barrios CH, De Albuquerque RR, De Mendonca Beato CA, et al. A randomized phase III trial of single-agent pemetrexed (P) versus carboplatin and pemetrexed (CP) in patients with advanced non-small cell lung cancer (NSCLC) and performance status (PS) of 2 [abstract]. J Clin Oncol. 2012;30(Suppl 15):Abstract 7506. Available at: http://ascopubs.org/doi/abs/10.1200/jco.2012.30.15_suppl.7506 Google Scholar
  73. 73.
    Villaruz LC, Socinski MA. Is there a role of nab-paclitaxel in the treatment of advanced non-small cell lung cancer? The data suggest yes. Eur J Cancer. 2016;56:162–71.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    •• Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46. A large trial comparing erlotinib versus standard chemotherapy as first-line in EGFR-mutated advanced NSCLS with EGFR mutation. CrossRefPubMedGoogle Scholar
  75. 75.
    •• Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34. A large trial comparing afatinib versus standard chemotherapy as first-line in EGFR-mutated advanced NSCLC. CrossRefPubMedGoogle Scholar
  76. 76.
    Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11(2):121–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Yasuda H, Kobayashi S, Costa DB. EGFR exon 20 insertion mutations in non-small-cell lung cancer: preclinical data and clinical implications. Lancet Oncol. 2012;13(1):e23–31.CrossRefPubMedGoogle Scholar
  78. 78.
    •• Finlay MR, Anderton M, Ashton S, Ballard P, Bethel PA, Box MR, et al. Discovery of a potent and selective EGFR inhibitor (AZD9291) of both sensitizing and T790M resistance mutations that spares the wild type form of the receptor. J Med Chem. 2014;57(20):8249–67. A preclinical study that has discovered the T790M resistance mutation. CrossRefPubMedGoogle Scholar
  79. 79.
    Rosell R, Molina MA, Costa C, Simonetti S, Gimenez-Capitan A, Bertran-Alamillo J, et al. Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations. Clin Cancer Res. 2011;17(5):1160–8.CrossRefPubMedGoogle Scholar
  80. 80.
    Gazdar A, Robinson L, Oliver D, Xing C, Travis WD, Soh J, et al. Hereditary lung cancer syndrome targets never smokers with germline EGFR gene T790M mutations. J Thorac Oncol. 2014;9(4):456–63.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363(18):1693–703.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus Crizotinib in untreated ALK-positive non-small-cell lung Cancer. N Engl J Med. 2017;377(9):829–38.CrossRefPubMedGoogle Scholar
  83. 83.
    •• Shaw AT, Kim TM, Crinò L, Gridelli C, Kiura K, Liu G, et al. Ceritinib versus chemotherapy in patients with ALK-rearranged non-small-cell lung cancer previously given chemotherapy and crizotinib (ASCEND-5): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(7):874–86. A prospective trial that showed the efficacy of ceritinib in previously treated ALK-positive NSCLC. CrossRefPubMedGoogle Scholar
  84. 84.
    •• Kim DW, Tiseo M, Ahn MJ, Reckamp KL, Hansen KH, Kim SW, et al. Brigatinib in Patients With Crizotinib-Refractory Anaplastic Lymphoma Kinase-Positive Non Small-Cell Lung Cancer: A Randomized, Multicenter Phase II Trial. J Clin Oncol. 2017;35(22):2490–8. A prospective trial that showed the efficacy of brigatinib in previously-treated ALK-positive NSCLC. CrossRefPubMedGoogle Scholar
  85. 85.
    Ou SH, Jänne PA, Bartlett CH, Tang Y, Kim DW, Otterson GA, et al. Clinical benefit of continuing ALK inhibition with crizotinib beyond initial disease progression in patients with advanced ALK-positive NSCLC. Ann Oncol. 2014;25(2):415–22.CrossRefPubMedGoogle Scholar
  86. 86.
    Dugay F, Llamas-Gutierrez F, Gournay M, Medane S, Mazet F, Chiforeanu DC, et al. Clinicopathological characteristics of ROS1- and RET-rearranged NSCLC in Caucasian patients: data from a cohort of 713 non-squamous NSCLC lacking KRAS/EGFR/HER2/BRAF/PIK3CA/ALK alterations. Oncotarget. 2017;8(32):53336–51.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    •• Kazandjian D, Blumenthal GM, Luo L, He K, Fran I, Lemery S, et al. Benefit-Risk Summary of Crizotinib for the Treatment of Patients With ROS1 Alteration-Positive, Metastatic Non-Small Cell Lung Cancer. Oncologist. 2016;21(8):974–80. Profile 1001 trial showing of crizotinib in ROS-1 positive metastatic NSCLC. CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    • Solomon BJ, Bauer TM, Felip E, Besse B, James LP, Clancy JS, et al. Safety and efficacy of lorlatinib (PF-06463922) from the dose-escalation component of a study in patients with advanced ALK+ or ROS1+ non-small cell lung cancer (NSCLC) [abstract]. J Clin Oncol. 2016;34:Abstract 9009. Phase I/II trial showing the efficacy and safety of lorlatinib in treatment naïve and previously treated ALK and/or ROS-1 positive advanced NSCL. CrossRefGoogle Scholar
  89. 89.
    • Farago AF, Le LP ZZ, Muzikansky A, Drilon A, Patel M, et al. Durable Clinical Response to Entrectinib in NTRK1-Rearranged Non-Small Cell Lung Cancer. J Thorac Oncol. 2015;10(12):1670–4. Phase 1 dose escalation study that showed that entrectinib may be an effective therapy for tumors with NTRK gene rearrangements, including those with central nervous system metastases. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    • Katayama R, Kobayashi Y, Friboulet L, Lockerman EL, Koike S, Shaw AT, et al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin Cancer Res. 2015;21(1):166–74. A large trial that identified cabozantinib as a therapeutic strategy to overcome the resistance to crizotinib. CrossRefPubMedGoogle Scholar
  91. 91.
    •• Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N Engl J Med. 2017;376(25):2415–26. Checkmate 026 trial showing efficacy of nivolumab in stage IV or recurrent NSCLC. CrossRefPubMedGoogle Scholar
  92. 92.
    •• Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 2016;375(19):1823–33. Keynote 024 trial showing efficacy of pembrolizumab compared to standard chemotherapy in PD-L1 positive NSCLC. CrossRefPubMedGoogle Scholar
  93. 93.
    •• Rittmeyer A, Barlesi F, Waterkamp D, Park K, Ciardiello F, von Pawel J, et al. Atezolizumab versus docetaxel in patients with previously treated non-small cell lung cancer(OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65. OAK trial showing the efficacy of atezolizumab in previously-treated NSCLC. CrossRefPubMedGoogle Scholar
  94. 94.
    Kerr KM, Hirsch FR. Programmed death ligand-1 immunohistochemistry: friend or foe? Arch Pathol Lab Med. 2016;140(4):326–31.CrossRefPubMedGoogle Scholar
  95. 95.
    Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin Cancer Res. 2016;22(18):4585–93.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    •• Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377(20):1919–29. PACIFIC trial showing the efficacy of maintenance durvalumab in stage III NSCLC CrossRefPubMedGoogle Scholar
  97. 97.
    Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter? J Clin Oncol. 2013;31(8):1112–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gerard Chaaya
    • 1
  • Ramsy Abdelghani
    • 2
  • Fayez Kheir
    • 2
  • Takefumi Komiya
    • 1
  • Nancy Vander Velde
    • 1
  1. 1.Section of Hematology/Medical OncologyTulane University School of MedicineNew OrleansUSA
  2. 2.Division of Pulmonary diseases, Critical Care and Environmental medicineTulane University Health Sciences CenterNew OrleansUSA

Personalised recommendations