Skip to main content

Advertisement

Log in

Interstitial Lung Disease, Body Mass Index, Energy Expenditure and Malnutrition—a Review

  • Nutrition in Clinical Care (J Patel, Section Editor)
  • Published:
Current Pulmonology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Interstitial lung disease (ILD) comprises a spectrum of chronic disorders that cause various degrees of inflammation or fibrosis in the pulmonary interstitium. Although limited, data exists on nutritional concerns in ILD. However, previous research has not fully explored the broad range of potential nutritional concerns in ILD and impacts on outcomes. The purpose of this review was to identify and describe the overall nutritional status and relating concerns within the ILD population.

Recent Findings

Appropriate weight management in this population may positively impact both pre- and post-transplant survival. Additionally, accounting for adequate muscle mass may predict better outcomes than considering body mass index alone. Current research has identified risk of malnutrition related to decreased muscle strength, increased energy expenditure, vitamin D deficiency, and increased risk of osteoporosis and osteopenia.

Summary

Current research is preliminary and further research is necessary to identify established nutritional complications in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bradley B, Branley HM, Egan JJ, Greaves MS, Hansell DM, Harrison NK, et al. Interstitial lung disease guideline: the British Thoracic Society in collaboration with the Thoracic Society of Australia and New Zealand and the Irish Thoracic Society. Thorax. 2008;63 Suppl 5:v1–58.

    PubMed  Google Scholar 

  2. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.

    PubMed  PubMed Central  Google Scholar 

  3. Travis WD, Costabel U, Hansell DM, King TE, Lynch DA, Nicholson AG, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med. 2013;188(6):733–48.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mura M, Porretta MA, Bargagli E, Sergiacomi G, Zompatori M, Sverzellati N, et al. Predicting survival in newly diagnosed idiopathic pulmonary fibrosis: a 3-year prospective study. Eur Respir J. 2012;40(1):101–9.

    PubMed  Google Scholar 

  5. Collard H, King T, Bartelson B, Vourlekis J, Schwarz M. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168(5):538–42.

    PubMed  Google Scholar 

  6. Richeldi L, Davies HHRHR, Spagnolo P, Luppi F. Corticosteroids for idiopathic pulmonary fibrosis. The Cochrane Collaboration, Richeldi L, editors. Database Syst Rev. 2003;(3):1–13.

  7. Spagnolo P, Del Giovane C, Luppi F, Cerri S, Balduzzi S, Walters EH, et al. Non-steroid agents for idiopathic pulmonary fibrosis. The Cochrane Collaboration, editor. Cochrane Database Syst Rev. 2010;(9):1–74.

  8. Hunninghake GM. A new hope for idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2142–3.

    CAS  PubMed  Google Scholar 

  9. Richeldi L, du Bois RM, Raghu G, Azuma A, Brown KK, Costabel U, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2071–82.

    PubMed  Google Scholar 

  10. Crockett AJ, Cranston JM, Antic N. Domiciliary oxygen for interstitial lung disease. The Cochrane Collaboration, Crockett A, editors. Cochrane Database Syst Rev. 2001;(3):CD002883.

  11. Holland AE, Hill C. Physical training for interstitial lung disease. The Cochrane Collaboration, Holland AE, editors. Cochrane Database Syst Rev. 2008;(4).

  12. Yusen RD, Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, et al. The registry of the international society for heart and lung transplantation: thirtieth adult lung and heart-lung transplant report—2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):965–78.

    PubMed  Google Scholar 

  13. CIHI. Canadian organ replacement register annual report: Treatment of end-stage organ failure in Canada, 2004 to 2013 [Internet]. 2014 [cited 2016 Mar 18]. p. 1–129. Available from: https://secure.cihi.ca/free_products/2015_CORR_AnnualReport_ENweb.pdf.

  14. Madill J, Maurer JR, de Hoyos A. A comparison of preoperative and postoperative nutritional states of lung transplant recipients. Transplantation. 1993;56(2):347–50.

    CAS  PubMed  Google Scholar 

  15. Madill J, Gutierrez C, Grossman J, Allard J, Chan C, Hutcheon M, et al. Nutritional assessment of the lung transplant patient: body mass index as a predictor of 90-day mortality following transplantation. J Heart Lung Transplant. 2001;20(3):288–96.

    CAS  PubMed  Google Scholar 

  16. Culver DA, Mazzone PJ, Khandwala F, Blazey HC, Decamp MM, Chapman JT. Discordant utility of ideal body weight and body mass index as predictors of mortality in lung transplant recipients. J Heart Lung Transplant. 2005;24(2):137–44.

    PubMed  Google Scholar 

  17. Gries CJ, Bhadriraju S, Edelman JD, Goss CH, Raghu G, Mulligan MS. Obese patients with idiopathic pulmonary fibrosis have a higher 90-day mortality risk with bilateral lung transplantation. J Heart Lung Transplant. 2015;34(2):241–6.

    PubMed  Google Scholar 

  18. • Singer JP, Peterson ER, Snyder ME, Katz PP, Golden JA, D’Ovidio F, et al. Body composition and mortality after adult lung transplantation in the United States. Am J Respir Crit Care Med. 2014;190(9):1012–21. This study provides novel insight into the relationship between body composition and outcomes. Previous research mainly focuses on BMI, however, authors have shown that results based on BMI alone do not yield the same results when one accounts for skeletal muscle mass.

    PubMed  PubMed Central  Google Scholar 

  19. Tynan C, Hasse JM. Current nutrition practices in adult lung transplantation. Nutr Clin Pract. 2004;19(6):587–96.

    PubMed  Google Scholar 

  20. Alakhras M, Decker PA, Nadrous HF, Collazo-Clavell M, Ryu JH. Body mass index and mortality in patients with idiopathic pulmonary fibrosis. Chest. 2007;131(5):1448–53.

    PubMed  Google Scholar 

  21. Celli B, Cote C, Marin J, Casanova C, Montes de Oca M, Mendez R, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–12.

    CAS  PubMed  Google Scholar 

  22. Cano N, Raphael J-C, Roth CM, Pichard C, Roth H, Isabelle C, et al. C-reactive protein and body mass index predict outcome in end-stage respiratory failure. Chest. 2004;126(2):540–6.

    PubMed  Google Scholar 

  23. Landbo C, Prescott E, Lange P, Vestbo J, Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(6):1856–61.

    CAS  PubMed  Google Scholar 

  24. Schols AM, Slangen J, Volovics L, Wouters EF. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1791–7.

    CAS  PubMed  Google Scholar 

  25. Chailleux E, Fauriux B, Binet F. Predictors of survival in patients receiving domiciliary oxygen therapy or mechanical ventilation: a 10-year analysis of ANTADIR Observatory. Chest. 1996;109(2):741–9.

    CAS  PubMed  Google Scholar 

  26. Wilson DO, Rogers RM, Wright EC, Anthonisen NR. Body weight in chronic obstructive pulmonary disease. The National Institutes of Health Intermittent Positive-Pressure Breathing Trial. Am Rev Respir Dis. 1989;139(6):1435–8.

    CAS  PubMed  Google Scholar 

  27. Gonzalez M, Pastore CA, Orlandi SP, Heymsfield SB. Obesity paradox in cancer: new insights provided by body composition. Am J Clin Nutr. 2014;99(5):999–1005.

    CAS  PubMed  Google Scholar 

  28. • Mendes PO, Wickerson L, Helm DE, Janaudis-ferreira TA, Brooks D, Singer LIG, et al. Skeletal muscle atrophy in advanced interstitial lung disease. 2015;20(6):953–9. This study focuses on physical activity in ILD and provides novel data on physical functionality. Implications from this research is directly related to nutrition as exercise training and rehabiliation may be enhanced by adequate nutrition intake.

  29. Cawood AL, Elia M, Stratton R. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements. Ageing Res Rev. 2012;11(2):278–96.

    CAS  PubMed  Google Scholar 

  30. Slinde F, Grönberg AM, Svantesson U, Hulthén L, Larsson S. Energy expenditure in chronic obstructive pulmonary disease-evaluation of simple measures. Eur J Clin Nutr. 2011;65(12):1309–13.

    CAS  PubMed  Google Scholar 

  31. Nordenson A, Gronberg AM, Hulthen L, Larsson S, Slinde F. A validated disease specific prediction equation for resting metabolic rate in underweight patients with COPD. Int J Chron Obstruct Pulmon Dis. 2010;5:271–6.

    PubMed  PubMed Central  Google Scholar 

  32. Slinde F, Grönberg A, Svantesson U, Hulthén L, Larsson S. Energy expenditure in chronic obstructive pulmonary disease—evaluation of simple measures. Eur J Clin Nutr. 2011;65(12):1309–13.

    CAS  PubMed  Google Scholar 

  33. Ryerson CJ, Collard HR, Pantilat SZ. Management of dyspnea in interstitial lung disease. Curr Opin Support Palliat Care. 2010;4(2):69–75.

    PubMed  Google Scholar 

  34. Fitting J, Frascarolo P, Jequier E, Leuenberger P. Energy expenditure in interstitial lung disease. Am Rev Respir Dis. 1990;142(3):631–5.

    CAS  PubMed  Google Scholar 

  35. Norman K, Pichard C, Lochs H, Pirlich M. Prognostic impact of disease-related malnutrition. Clin Nutr. 2008;27(1):5–15.

    PubMed  Google Scholar 

  36. Detsky A, McLaughlin JR, Baker J. What is subjective global assessment of nutritional status? JPEN. 1987;11(1):8–13.

    CAS  Google Scholar 

  37. Günay E, Kaymaz D, Selçuk NT, Ergün P, Sengül F, Demir N. Effect of nutritional status in individuals with chronic obstructive pulmonary disease undergoing pulmonary rehabilitation. Respirology. 2013;18:1217–22.

    PubMed  Google Scholar 

  38. Gupta B, Kant S, Mishra R. Subjective global assessment of nutritional status of chronic obstructive pulmonary disease patients on admission. Int J Tuberc Lung Dis. 2010;14(4):500–5.

    CAS  PubMed  Google Scholar 

  39. Autore K, Black T, Klesen M, Richards T, Gibson K, Kaminski N, et al. Evaluating nutritional status of patients with idiopathic pulmonary fibrosis: a prospective pilot study using the mini nutrition assessment short from. In: A42 Interstitial Lung Disease: Epidemiology, Evaluation and Pathogenesis. Philadelphia Pennsylvania: American Thoracic Society; 2013. p. A1461–A1461.

  40. Buhr G, Bales CW. Nutritional supplements for older adults: review and recommendations--Part II. J Nutr Elder. 2010;29(1):42–71.

    PubMed  Google Scholar 

  41. Buhr G, Bales CW. Nutritional supplements for older adults: review and recommendations—part I. J Nutr Elder. 2009;28(1):5–29.

    PubMed  Google Scholar 

  42. McCaddon A. Vitamin B12 in neurology and ageing; clinical and genetic aspects. Biochimie. 2013;95(5):1066–76.

    CAS  PubMed  Google Scholar 

  43. Arai T, Inoue Y, Sasaki Y, Tachibana K, Nakao K, Sugimoto C, et al. Predictors of the clinical effects of pirfenidone on idiopathic pulmonary fibrosis. Respir Investig. 2014;52:136–43.

    PubMed  Google Scholar 

  44. de Groot L. Nutritional issues for older adults: addressing degenerative ageing with long-term studies. Proc Nutr Soc. 2016;75(2):169–73.

    PubMed  Google Scholar 

  45. Lems WF, Van Veen GJ, Gerrits MI, Jacobs JW, Houben HH, Van Rijn HJ, et al. Effect of low-dose prednisone (with calcium and calcitriol supplementation) on calcium and bone metabolism in healthy volunteers. Br J Rheumatol. 1998;37(1):27–33.

    CAS  PubMed  Google Scholar 

  46. Finklea JD, Grossmann RE, Tangpricha V. Vitamin D and chronic lung disease: a review of molecular mechanisms and clinical studies. Adv Nutr. 2011;2(3):244–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hagaman J, Panos R, McCormack F, Thakar C, Wikenheiser-Brokamp K, Shipley R, et al. Vitamin D deficiency and reduced lung function in connective tissue-associated interstitial lung diseases. 2011;139(2):353–60.

  48. Mascitelli L, Pezzetta F, Goldstein MR, Waschki B, Kirsten A. Vitamin D and mortality from pulmonary fibrosis a positive end-expiratory pressure effect. Chest. 2010;137(2):495–6.

    PubMed  Google Scholar 

  49. Olson A, Swigris J, Raghu G, Brown KK. Seasonal variation: mortality from pulmonary fibrosis is greatest in the winter. Chest. 2009;136(1):16–22.

    PubMed  Google Scholar 

  50. Ramirez A, Wongtrakool C, Welch T, Steinmeyer A, Zugel U, Roman J. Vitamin D inhibition of pro-fibrotic effects of transforming growth factor beta1 in lung fibroblasts and epithelial cells. J Steroid Biochem Mol Biol. 2010;118(3):142–50.

    CAS  PubMed  Google Scholar 

  51. •• Alhamad EH, Nadama R. Bone mineral density in patients with interstitial lung disease. Sarcoidosis Vasc Diffuse Lung Dis. 2015;32:151–9. This study identified osteoporosis and ostepenia and a clinically signicant portion of their sample. Authors found that increasing age, UIP diagnosis, higher partial pressure of carbon dioxide, hypertension and diabetes.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Madill.

Ethics declarations

Conflict of Interest

Marco Mura, Janet Madill, and Sylvia Renaldi declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition in Clinical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rinaldi, S., Mura, M. & Madill, J. Interstitial Lung Disease, Body Mass Index, Energy Expenditure and Malnutrition—a Review. Curr Pulmonol Rep 6, 70–74 (2017). https://doi.org/10.1007/s13665-017-0168-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-017-0168-x

Keywords

Navigation