Skip to main content

Advertisement

Log in

Immunosuppression for lung transplant recipients

  • Lung Transplant (M Zamora, Section Editor)
  • Published:
Current Respiratory Care Reports Aims and scope Submit manuscript

Abstract

The choices and extent of immunosuppression critically affect subsequent infection and rejection profiles after lung transplantation (LTx). Evidence does not support a particular induction strategy. Typically, a three drug regimen of a calcineurin inhibitor, cell cycle inhibitor, and corticosteroids provide LTx maintenance immunosuppression. Other agents (including mTOR inhibitors), and other routes of administration (sublingual or inhaled) tend to be held back for specific clinical problems. Treatment of acute cellular rejection with high dose corticosteroids is usually successful. By contrast, treatment of antibody–mediated rejection is problematic. It requires a combination of high dose corticosteroids, plasmapheresis, rituximab, and intravenous immunoglobulin. Chronic lung rejection is a particular challenge to treat. It is generally stated that any change in immunosuppression can lead to an apparent stabilization. Azithromycin and statins have some efficacy when used early. The current review aims to highlight the rationale for current immunosuppressive choices and draw attention to recent trends and developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Christie JD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Dobbels F, et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant. 2012;31(10):1073–86.

    Article  PubMed  Google Scholar 

  2. Estenne M, Maurer JR, Boehler A, Egan JJ, Frost A, Hertz M, et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant. 2002;21(3):297–310.

    Article  PubMed  Google Scholar 

  3. Taniguchi Y, Frickhofen N, Raghavachar A, Digel W, Heimpel H. Antilymphocyte immunoglobulins stimulate peripheral blood lymphocytes to proliferate and release lymphokines. Eur J Haematol. 1990;44(4):244–51.

    Article  CAS  PubMed  Google Scholar 

  4. Knoop C, Haverich A, Fischer S. Immunosuppressive therapy after human lung transplantation. Eur Respir J. 2004;23(1):159–71.

    Article  CAS  PubMed  Google Scholar 

  5. Hartwig MG, Snyder LD, Appel 3rd JZ, Cantu 3rd E, Lin SS, Palmer SM, et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant. 2008;27(5):547–53.

    Article  PubMed  Google Scholar 

  6. Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF. Rabbit antithymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest. 1999;116(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  7. Snell GI, Westall G, Levvey BJ, Jaksch P, Hoopes CW, Keshavjee S, et al. A phase III, double-blind, placebo-controlled, multicenter, dose-ranging study of rabbit ATG in the prophylaxis of acute rejection in lung transplantation. Am J Transplant. 2014; In press.

  8. Sweet SC. Induction therapy in lung transplantation. Transpl Int. 2013;26(7):696–703.

    Article  CAS  PubMed  Google Scholar 

  9. Ciancio G, Burke 3rd GW. Alemtuzumab (Campath-1H) in kidney transplantation. Am J Transplant. 2008;8(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  10. van Loenhout KC, Groves SC, Galazka M, Sherman B, Britt E, Garcia J, et al. Early outcomes using alemtuzumab induction in lung transplantation. Interact Cardiovasc Thorac Surg. 2010;10(2):190–4.

    Article  PubMed  Google Scholar 

  11. Shyu S, Dew MA, Pilewski JM, DeVito Dabbs AJ, Zaldonis DB, Studer SM, et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant. 2011;30(7):743–54. This potent agent shows promise in terms of protection from BO. Watch this space.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ailawadi G, Smith PW, Oka T, Wang H, Kozower BD, Daniel TM, et al. Effects of induction immunosuppression regimen on acute rejection, bronchiolitis obliterans, and survival after lung transplantation. J Thorac Cardiovasc Surg. 2008;135(3):594–602.

    Article  PubMed  Google Scholar 

  13. Garrity Jr ER, Villanueva J, Bhorade SM, Husain AN, Vigneswaran WT. Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation. 2001;71(6):773–7.

    Article  CAS  PubMed  Google Scholar 

  14. Hachem RR, Chakinala MM, Yusen RD, Lynch JP, Aloush AA, Patterson GA, et al. A comparison of basiliximab and anti-thymocyte globulin as induction agents after lung transplantation. J Heart Lung Transplant. 2005;24(9):1320–6.

    Article  PubMed  Google Scholar 

  15. Burton CM, Andersen CB, Jensen AS, Iversen M, Milman N, Boesgaard S, et al. The incidence of acute cellular rejection after lung transplantation: a comparative study of anti-thymocyte globulin and daclizumab. J Heart Lung Transplant. 2006;25(6):638–47.

    Article  PubMed  Google Scholar 

  16. Kahan BD, Dunn J, Fitts C, Van Buren D, Wombolt D, Pollak R, et al. Reduced inter- and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation. 1995;59(4):505–11.

    Article  CAS  PubMed  Google Scholar 

  17. Reynaud-Gaubert M, Viard L, Girault D, Bertault-Perez P, Guignard M, Metras D, et al. Improved absorption and bioavailability of cyclosporine A from a microemulsion formulation in lung transplant recipients affected with cystic fibrosis. Transplant Proc. 1997;29(5):2450–3.

    Article  CAS  PubMed  Google Scholar 

  18. Kesten S, Scavuzzo M, Chaparro C, Szalai JP. Pharmacokinetic profile and variability of cyclosporine versus neoral in patients with cystic fibrosis after lung transplantation. Pharmacotherapy. 1998;18(4):847–50.

    CAS  PubMed  Google Scholar 

  19. Trull A, Steel L, Sharples L, Stewart S, Parameshwar J, McNeil K, et al. Randomized, trough blood cyclosporine concentration-controlled trial to compare the pharmacodynamics of Sandimmune and Neoral in de novo lung transplant recipients. Drug Monit. 1999;21(1):17–26.

    Article  CAS  Google Scholar 

  20. Dumont RJ, Partovi N, Levy RD, Fradet G, Ensom MH. A limited sampling strategy for cyclosporine area under the curve monitoring in lung transplant recipients. J Heart Lung Transplant. 2001;20(8):897–900.

    Article  CAS  PubMed  Google Scholar 

  21. Glanville AR, Aboyoun CL, Morton JM, Plit M, Malouf MA. Cyclosporine C2 target levels and acute cellular rejection after lung transplantation. J Heart Lung Transplant. 2006;25(8):928–34.

    Article  PubMed  Google Scholar 

  22. Keenan RJ, Konishi H, Kawai A, Paradis IL, Nunley DR, Iacono AT, et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg. 1995;60(3):580–4.

    Article  CAS  PubMed  Google Scholar 

  23. Treede H, Klepetko W, Reichenspurner H, Zuckermann A, Meiser B, Birsan T, et al. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant. 2001;20(5):511–7.

    Article  CAS  PubMed  Google Scholar 

  24. Zuckermann A, Reichenspurner H, Birsan T, Treede H, Deviatko E, Reichart B, et al. Cyclosporine A versus tacrolimus in combination with mycophenolate mofetil and steroids as primary immunosuppression after lung transplantation: one-year results of a 2-center prospective randomized trial. J Thorac Cardiovasc Surg. 2003;125(4):891–900.

    Article  CAS  PubMed  Google Scholar 

  25. Treede H, Glanville AR, Klepetko W, Aboyoun C, Vettorazzi E, Lama R, et al. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant. 2012;31(8):797–804.

    Article  PubMed  Google Scholar 

  26. Van Gelder T, Klupp J, Barten MJ, Christians U, Morris RE. Co-administration of tacrolimus and mycophenolate mofetil does not increase mycophenolic acid (MPA) exposure, but co-administration of cyclosporine inhibits the enterohepatic recirculation of MPA, thereby decreasing its exposure. J Heart Lung Transplant. 2001;20(2):160–1.

    Article  PubMed  Google Scholar 

  27. Palmer SM, Baz MA, Sanders L, Miralles AP, Lawrence CM, Rea JB, et al. Results of a randomized, prospective, multicenter trial of mycophenolate mofetil versus azathioprine in the prevention of acute lung allograft rejection. Transplantation. 2001;71(12):1772–6.

    Article  CAS  PubMed  Google Scholar 

  28. Glanville AR, Corris PA, McNeil KD, Wahlers T. Mycophenolate Mofetil (MMF) vs Azathioprine (AZA) in lung transplantation for the prevention of Bronchiolitis Obliterans Syndrome (BOS): results of a 3 year international randomised trial. J Heart Lung Transplant. 2003;22(1):S207.

    Article  Google Scholar 

  29. Glanville AR, Aboyoun CL, Klepetko W, Reichenspurner H, Treede H, Verschuuren EA, et al. 278: 1-year results of the CeMyLungs Study, a 3-year randomised, Open Label, Multi-Centre Investigator Driven Study comparing de novo enteric coated mycophenolate sodium with delayed onset everolimus, both arms in combination with cyclosporin (using C2 monitoring) and corticosteroids for the prevention of the bronchiolitis Obliterans Syndrome in heart-lung, bilateral lung and single lung transplant recipients. J Heart Lung Transplant. 2010;29(2):S94.

    Article  Google Scholar 

  30. Snell GI, Valentine VG, Vitulo P, Glanville AR, McGiffin DC, Loyd JE, et al. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant. 2006;6(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  31. Bhorade S, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Comparison of sirolimus with azathioprine in a tacrolimus-based immunosuppressive regimen in lung transplantation. Am J Respir Crit Care Med. 2011;183(3):379–87.

    Article  CAS  PubMed  Google Scholar 

  32. McWilliams TJ, Levvey BJ, Russell PA, Milne DG, Snell GI. Interstitial pneumonitis associated with sirolimus: a dilemma for lung transplantation. J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2003;22(2):210–3.

    Article  Google Scholar 

  33. King-Biggs MB, Dunitz JM, Park SJ, Kay Savik S, Hertz MI. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. Transplantation. 2003;75(9):1437–43.

    Article  PubMed  Google Scholar 

  34. Villanueva J, Boukhamseen A, Bhorade SM. Successful use in lung transplantation of an immunosuppressive regimen aimed at reducing target blood levels of sirolimus and tacrolimus. J Heart Lung Transplant. 2005;24(4):421–5.

    Article  PubMed  Google Scholar 

  35. Gullestad L, Iversen M, Mortensen SA, Eiskjaer H, Riise GC, Mared L, et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. Transplantation. 2010;89(7):864–72.

    Article  CAS  PubMed  Google Scholar 

  36. Ghassemieh B, Ahya VN, Baz MA, Valentine VG, Arcasoy SM, Love RB, et al. Decreased incidence of cytomegalovirus infection with sirolimus in a post hoc randomized, multicenter study in lung transplantation. J Heart Lung Transplant. 2013;32(7):701–6. This effect has been seen in other types of solid organ transplant and, if confirmed, may be particularly useful in lung transplantation.

    Article  PubMed  Google Scholar 

  37. Stewart S, Fishbein MC, Snell GI, Berry GJ, Boehler A, Burke MM, et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant. 2007;26(12):1229–42.

    Article  PubMed  Google Scholar 

  38. Hopkins PM, Aboyoun CL, Chhajed PN, Malouf MA, Plit ML, Rainer SP, et al. Association of minimal rejection in lung transplant recipients with obliterative bronchiolitis. Am J Respir Crit Care Med. 2004;170(9):1022–6.

    Article  PubMed  Google Scholar 

  39. Griffith BP, Bando K, Hardesty RL, Armitage JM, Keenan RJ, Pham SM, et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. Transplantation. 1994;57(6):848–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Horning NR, Lynch JP, Sundaresan SR, Patterson GA, Trulock EP. Tacrolimus therapy for persistent or recurrent acute rejection after lung transplantation. J Heart Lung Transplant. 1998;17(8):761–7.

    CAS  PubMed  Google Scholar 

  41. Onsager DR, Canver CC, Jahania MS, Welter D, Michalski M, Hoffman AM, et al. Efficacy of tacrolimus in the treatment of refractory rejection in heart and lung transplant recipients. J Heart Lung Transplant. 1999;18(5):448–55.

    Article  CAS  PubMed  Google Scholar 

  42. Shennib H, Mercado M, Nguyen D, Ernst P, Lebel F, O'Donovan M, et al. Successful treatment of steroid-resistant double-lung allograft rejection with Orthoclone OKT3. Am Rev Respir Dis. 1991;144(1):224–6.

    Article  CAS  PubMed  Google Scholar 

  43. Reams BD, Musselwhite LW, Zaas DW, Steele MP, Garantziotis S, Eu PC, et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant. 2007;7(12):2802–8.

    Article  CAS  PubMed  Google Scholar 

  44. Valentine VG, Robbins RC, Wehner JH, Patel HR, Berry GJ, Theodore J. Total lymphoid irradiation for refractory acute rejection in heart-lung and lung allografts. Chest. 1996;109(5):1184–9.

    Article  CAS  PubMed  Google Scholar 

  45. Dall'Amico R, Messina C. Extracorporeal photochemotherapy for the treatment of graft-versus-host disease. Ther Apher. 2002;6(4):296–304.

    Article  PubMed  Google Scholar 

  46. Lefaucheur C, Suberbielle-Boissel C, Hill GS, Nochy D, Andrade J, Antoine C, et al. Clinical relevance of preformed HLA donor-specific antibodies in kidney transplantation. Am J Transplant. 2008;8(2):324–31.

    Article  CAS  PubMed  Google Scholar 

  47. Berry GJ, Burke MM, Andersen C, Bruneval P, Fedrigo M, Fishbein MC, et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in lung transplantation. J Heart Lung Transplant. 2013;32(12):1147–62.

    Article  PubMed  Google Scholar 

  48. Glanville AR. Antibody-mediated rejection in lung transplantation: turning myth into reality. J Heart Lung Transplant. 2013;32(1):12–3.

    Article  PubMed  Google Scholar 

  49. Roberts DM, Jiang SH, Chadban SJ. The treatment of acute antibody-mediated rejection in kidney transplant recipients-a systematic review. Transplantation. 2012;94(8):775–83.

    Article  CAS  PubMed  Google Scholar 

  50. Neumann J, Tarrasconi H, Bortolotto A, Machuca T, Canabarro R, Sporleder H, et al. Acute humoral rejection in a lung recipient: reversion with bortezomib. Transplantation. 2010;89(1):125–6.

    Article  PubMed  Google Scholar 

  51. Dawson KL, Parulekar A, Seethamraju H. Treatment of hyperacute antibody-mediated lung allograft rejection with eculizumab. J Heart Lung Transplant. 2012;31(12):1325–6.

    Article  PubMed  Google Scholar 

  52. Sato M, Hwang DM, Waddell TK, Singer LG, Keshavjee S. Progression pattern of restrictive allograft syndrome after lung transplantation. J Heart Lung Transplant. 2013;32(1):23–30. A novel description of chronic lung rejection- potentially important future ramifications for immunosuppression.

    Article  PubMed  Google Scholar 

  53. Verleden SE, Verleden GM, Vanaudenaerde BM. Phenotyping BOS could improve understanding of mechanisms involved. J Heart Lung Transplant. 2010;30(1):112.

    Article  PubMed  Google Scholar 

  54. Snell G, Levvey B, Westall G. Non-Bronchiolitis Obliterans Syndrome (BOS) forms of Chronic Lung Allograft Dysfunction (CLAD). In: A. G, J. M, editors. Bronchiolitis Obliterans Syndrome after lung transplantation. New York: Springer; 2013.

  55. Knoop C, Estenne M. Acute and chronic rejection after lung transplantation. Semin Respir Crit Care Med. 2006;27(5):521–33.

    Article  PubMed  Google Scholar 

  56. Zamora MR. Updates in lung transplantation. Clin Transpl. 2012:185–92.

  57. Federica M, Nadia S, Monica M, Alessandro C, Tiberio O, Francesco B, et al. Clinical and immunological evaluation of 12-month azithromycin therapy in chronic lung allograft rejection. Clin Transplant. 2011;25(4):E381–9.

    Article  CAS  PubMed  Google Scholar 

  58. Vos R, Vanaudenaerde BM, Verleden SE, De Vleeschauwer SI, Willems-Widyastuti A, Van Raemdonck DE, et al. A randomised controlled trial of azithromycin to prevent chronic rejection after lung transplantation. Eur Respir J. 2011;37(1):164–72.

    Article  CAS  PubMed  Google Scholar 

  59. Corris PA, Small T, Ryan VA, Lordan J. A randomized controlled trial of azithromycin therapy in BOS post-lung transplantation. J Heart Lung Transplant. 2012;31(4):S67.

    Article  Google Scholar 

  60. Johnson BA, Iacono AT, Zeevi A, McCurry KR, Duncan SR. Statin use is associated with improved function and survival of lung allografts. Am J Respir Crit Care Med. 2003;167(9):1271–8.

    Article  PubMed  Google Scholar 

  61. Morrell MR, Despotis GJ, Lublin DM, Patterson GA, Trulock EP, Hachem RR. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2010;29(4):424–31.

    Article  PubMed  Google Scholar 

  62. Verleden GM, Lievens Y, Dupont LJ, Van Raemdonck DE, De Vleeschauwer SI, Vos R, et al. Efficacy of total lymphoid irradiation in azithromycin nonresponsive chronic allograft rejection after lung transplantation. Transplant Proc. 2009;41(5):1816–20.

    Article  CAS  PubMed  Google Scholar 

  63. Verleden GM, Verleden SE, Vos R, De Vleeschauwer SI, Dupont LJ, Van Raemdonck DE, et al. Montelukast for bronchiolitis obliterans syndrome after lung transplantation: a pilot study. Transpl Int. 2011;24(7):651–6.

    Article  PubMed  Google Scholar 

  64. Bizargity P, Liu K, Wang L, Hancock WW, Visner GA. Inhibitory effects of pirfenidone on dendritic cells and lung allograft rejection. Transplantation. 2012;94(2):114–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Reams D, Rea J, Davis D, Palmer S. Utility of sublingual tacrolimus in cystic fibrosis patients after lung transplantation. J Heart Lung Transplant. 2001;20(2):207–8.

    Article  PubMed  Google Scholar 

  66. Raviv Y, D'Ovidio F, Pierre A, Chaparro C, Freeman M, Keshavjee S, et al. Prevalence of gastroparesis before and after lung transplantation and its association with lung allograft outcomes. Clin Transplant. 2012;26(1):133–42.

    Article  PubMed  Google Scholar 

  67. Snell GI, Westall GP. Immunosuppression for lung transplantation: evidence to date. Drugs. 2007;67(11):1531–9.

    Article  CAS  PubMed  Google Scholar 

  68. Wu Q, Marescaux C, Wolff V, Jeung MY, Kessler R, Lauer V, et al. Tacrolimus-associated posterior reversible encephalopathy syndrome after solid organ transplantation. Eur Neurol. 2010;64(3):169–77.

    Article  CAS  PubMed  Google Scholar 

  69. Hayek GH, Allen J, Baize T, Mudd L, Mehta AS, Cheerva A, et al. Twice daily intravenous bolus tacrolimus infusion for acute graft-vs-host diseae prophylaxis. Biol Blood Marrow Transplant. 2004;10(2):45.

    Google Scholar 

  70. Sakamoto Y, Makuuchi M, Harihara Y, Imamura H, Sato H. Higher intracerebral concentration of tacrolimus after intermittent than continuous administration to rats. Liver Transplant. 2001;7(12):1071–6.

    Article  CAS  Google Scholar 

  71. Hibi T, Tanabe M, Hoshino K, Fuchimoto Y, Kawachi S, Itano O, et al. Cyclosporine A-based immunotherapy in adult living donor liver transplantation: accurate and improved therapeutic drug monitoring by 4-hr intravenous infusion. Transplantation. 2011;92(1):100–5.

    Article  CAS  PubMed  Google Scholar 

  72. Snell G, Ivulich S, Mitchell L, Westall GP, Levvey BJ. Evolution to twice daily bolus intravenous tacrolimus: optimizing efficacy and safety of calcineurin inhibitor delivery early post lung transplant. Ann Transplant. 2013;18:399–407.

    Article  PubMed  Google Scholar 

  73. Goorhuis JF, Scheenstra R, Peeters PM, Albers MJ. Buccal vs. nasogastric tube administration of tacrolimus after pediatric liver transplantation. Ped Transplant. 2006;10(1):74–7.

    Article  Google Scholar 

  74. Romero I, Jimenez C, Gil F, Escuin F, Ramirez E, Fudio S, et al. Sublingual administration of tacrolimus in a renal transplant patient. J Clin Pharm Ther. 2008;33(1):87–9.

    Article  CAS  PubMed  Google Scholar 

  75. Watkins KD, Boettger RF, Hanger KM, Leard LE, Golden JA, Hoopes CW, et al. Use of sublingual tacrolimus in lung transplant recipients. J Heart Lung Transplant. 2012;31(2):127–32.

    Article  PubMed  Google Scholar 

  76. Janata RJ, Boukhamseen A, Kramer HJ, Michalski L, Bhorade S, Vigneswaran W, et al. Comparison of sublingual to oral tacrolimus administration in lung transplantation. J Heart Lung Transplant. 2005;24(2):S90.

    Article  Google Scholar 

  77. Reams BD, Palmer SM. Sublingual tacrolimus for immunosuppression in lung transplantation: a potentially important therapeutic option in cystic fibrosis. Am J Resp Med. 2002;1(2):91–8.

    Article  CAS  Google Scholar 

  78. Whitford H, Walters EH, Levvey B, Kotsimbos T, Orsida B, Ward C, et al. Addition of inhaled corticosteroids to systemic immunosuppression after lung transplantation: a double-blind, placebo-controlled trial. Transplantation. 2002;73(11):1793–9.

    Article  CAS  PubMed  Google Scholar 

  79. Keenan RJ, Zeevi A, Iacono AT, Spichty KJ, Cai JZ, Yousem SA, et al. Efficacy of inhaled cyclosporine in lung transplant recipients with refractory rejection: correlation of intragraft cytokine gene expression with pulmonary function and histologic characteristics. Surgery. 1995;118(2):385–91.

    Article  CAS  PubMed  Google Scholar 

  80. Groves S, Galazka M, Johnson B, Corcoran T, Verceles A, Britt E, et al. Inhaled cyclosporine and pulmonary function in lung transplant recipients. J Aero Med Pul Drug Del. 2010;23(1):31–9.

    Article  CAS  Google Scholar 

  81. Niven RW. Toward managing chronic rejection after lung transplant: the fate and effects of inhaled cyclosporine in a complex environment. Adv Drug Deliv Rev. 2011;63(1–2):88–109.

    Article  CAS  PubMed  Google Scholar 

  82. Schrepfer S, Deuse T, Reichenspurner H, Hoffmann J, Haddad M, Fink J, et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. Am J Transplant. 2007;7(7):1733–42.

    Article  CAS  PubMed  Google Scholar 

  83. Deuse T, Blankenberg F, Haddad M, Reichenspurner H, Phillips N, Robbins RC, et al. Mechanisms behind local immunosuppression using inhaled tacrolimus in preclinical models of lung transplantation. Am J Respir Cell Mol Biol. 2010;43(4):403–12.

    Article  CAS  PubMed  Google Scholar 

  84. Abecassis MM, Seifeldin R, Riordan ME. Patient outcomes and economics of once-daily tacrolimus in renal transplant patients: results of a modeling analysis. Transplant Proc. 2008;40(5):1443–5.

    Article  CAS  PubMed  Google Scholar 

  85. Marzoa-Rivas R, Paniagua-Martin MJ, Barge-Caballero E, Pedrosa del Moral V, Barge-Caballero G, Grille-Cancela Z, et al. Conversion of heart transplant patients from standard to sustained-release tacrolimus requires a dosage increase. Transplant Proc. 2010;42(8):2994–6.

    Article  CAS  PubMed  Google Scholar 

  86. Beckebaum S, Iacob S, Sweid D, Sotiropoulos GC, Saner F, Kaiser G, et al. Efficacy, safety, and immunosuppressant adherence in stable liver transplant patients converted from a twice-daily tacrolimus-based regimen to once-daily tacrolimus extended-release formulation. Transpl Int. 2011;24(7):666–75.

    Article  CAS  PubMed  Google Scholar 

  87. Tinti F, Mecule A, Poli L, Bachetoni A, Umbro I, Brunini F, et al. Improvement of graft function after conversion to once daily tacrolimus of stable kidney transplant patients. Transplant Proc. 2010;42(10):4047–8.

    Article  CAS  PubMed  Google Scholar 

  88. Wu MJ, Cheng CY, Chen CH, Wu WP, Cheng CH, Yu DM, et al. Lower variability of tacrolimus trough concentration after conversion from prograf to advagraf in stable kidney transplant recipients. Transplantation. 2011;92(6):648–52.

    Article  CAS  PubMed  Google Scholar 

  89. Doesch AO, Mueller S, Konstandin M, Celik S, Erbel C, Kristen A, et al. Increased adherence after switch from twice daily calcineurin inhibitor based treatment to once daily modified released tacrolimus in heart transplantation: a pre-experimental study. Transplant Proc. 2010;42(10):4238–42.

    Article  CAS  PubMed  Google Scholar 

  90. Pollock-Barziv SM, Finkelstein Y, Manlhiot C, Dipchand AI, Hebert D, Ng VL, et al. Variability in tacrolimus blood levels increases the risk of late rejection and graft loss after solid organ transplantation in older children. Ped Transplant. 2010;14(8):968–75.

    Article  Google Scholar 

  91. Prytula AA, Bouts AH, Mathot RA, van Gelder T, Croes LK, Hop W, et al. Intra-patient variability in tacrolimus trough concentrations and renal function decline in pediatric renal transplant recipients. Ped Transplant. 2012;16(6):613–8.

    Article  CAS  Google Scholar 

  92. Hsiau M, Fernandez HE, Gjertson D, Ettenger RB, Tsai EW. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. Transplantation. 2011;92(8):918–22.

    Article  CAS  PubMed  Google Scholar 

  93. Rogers CC, Alloway RR, Alexander JW, Cardi M, Trofe J, Vinks AA. Pharmacokinetics of mycophenolic acid, tacrolimus and sirolimus after gastric bypass surgery in end-stage renal disease and transplant patients: a pilot study. Clin Transplant. 2008;22(3):281–91.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Chiang CY, Schneider HG, Levvey B, Mitchell L, Snell GI. Tacrolimus level variability is a novel measure associated with increased acute rejection in lung transplant (LTx) recipients. J Heart Lung Transplant. 2013;32(4):S170.

    Article  Google Scholar 

  95. Taber DJ, Baillie GM, Ashcraft EE, Rogers J, Lin A, Afzal F, et al. Does bioequivalence between modified cyclosporine formulations translate into equal outcomes? Transplantation. 2005;80(11):1633–5.

    Article  CAS  PubMed  Google Scholar 

  96. Kurnatowska I, Krawczyk J, Oleksik T, Nowicki M. Tacrolimus dose and blood concentration variability in kidney transplant recipients undergoing conversion from twice daily to once daily modified release tacrolimus. Transplant Proc. 2011;43(8):2954–6.

    Article  CAS  PubMed  Google Scholar 

  97. Uber PA, Ross HJ, Zuckermann AO, Sweet SC, Corris PA, McNeil K, et al. Generic drug immunosuppression in thoracic transplantation: an ISHLT educational advisory. J Heart Lung Transplant. 2009;28(7):655–60.

    Article  PubMed  Google Scholar 

  98. Abdulnour HA, Araya CE, Dharnidharka VR. Comparison of generic tacrolimus and Prograf drug levels in a pediatric kidney transplant program: brief communication. Ped Transplant. 2010;14(8):1007–11.

    Article  Google Scholar 

  99. Ensor CR, Trofe-Clark J, Gabardi S, McDevitt-Potter LM, Shullo MA. Generic maintenance immunosuppression in solid organ transplant recipients. Pharmacotherapy. 2011;31(11):1111–29.

    Article  CAS  PubMed  Google Scholar 

  100. Medicine and Healthcare Products Regulatory Authority UKG. Oral tacrolimus products: measures to reduce risks of medication errors. Drug Saf Updat. 2010;3(10):5–7.

    Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the support of the Margaret Pratt Foundation in the writing of this review.

Compliance with Ethics Guidelines

Conflict of Interest

No authors have a conflict of interest with regard to this article.

Human and Animal Rights and Informed Consent

This article is a review article and does not contain any studies with human or animal subjects performed by any of the authors that have not been published elsewhere, with all subjects previously giving informed consent under Institutional Ethics Committee approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory I. Snell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snell, G.I., Paraskeva, M.A., Levvey, B.J. et al. Immunosuppression for lung transplant recipients. Curr Respir Care Rep 3, 88–95 (2014). https://doi.org/10.1007/s13665-014-0081-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13665-014-0081-5

Keywords

Navigation