Skip to main content
Log in

Effect of Low-temperature Annealing on Mechanical Properties of Warm-rolled High Silicon Steel Produced by Twin-roll Strip Casting

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The 1.7-mm-thick as-cast 6.5 wt.%Si steel strip was prepared by a top side-pouring twin-roll caster. The strip is subsequently warm-rolled to 0.4 mm at 700 °C. The warm-rolled sheets were cold-rolled to 0.15 mm after being annealed at various temperatures between 250 and 450 °C for 1 hour. The microstructure, microhardness, and room temperature mechanical properties, residual stress, dislocation density, ordered phases of the warm-rolled sheet and the annealed sheets were studied and analyzed. Due to the combined effect of residual stress, dislocation density, and ordered phases, the microhardness of the annealed sheets and the edge cracks of cold-rolled sheets showed a trend to decrease first and then increase with the increasing of annealing temperature. The room temperature plasticity showed a trend to increase first and then decrease. When annealing is done at 350 °C, the plasticity of the warm-rolled sheet at room temperature can be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Krings, A. Boglietti, A. Cavagnino, S. Sprague, Soft magnetic material status and trends in electric machines. IEEE Trans. Ind. Electron. 64(3), 2405–2414 (2017)

    Article  Google Scholar 

  2. K.I. Arai, K. Ishiyama, Recent developments of new soft magnetic materials. J. Magn. Magn. Mater. 133(1–3), 233–237 (1994)

    Article  CAS  Google Scholar 

  3. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, Review of Fe-6.5 wt.% Si high silicon steel—a promising soft magnetic material for sub-kHz application. J. Magn. Magn. Mater. 481, 234–250 (2019)

    Article  CAS  Google Scholar 

  4. M. Komatsubara, K. Sadahiro, O. Kondo, T. Takamiya, A. Honda, Newly developed electrical steel for high-frequency use. J. Magn. Magn. Mater. 242–245, 212–215 (2002)

    Article  Google Scholar 

  5. J.S. Shin, J.S. Bae, H.J. Kim, H.M. Lee, T.D. Lee, E.J. Lavernia, Z.H. Lee, Ordering–disordering phenomena and micro-hardness characteristics of b2 phase in Fe–(5–6.5%)Si alloys. Mater. Sci. Eng. A. 407(1–2), 282–290 (2005)

    Article  Google Scholar 

  6. B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, F. Fiorillo, Study of the brittle behaviour of annealed Fe-6.5 wt.%Si ribbons produced by planar flow casting. Mater. Sci. Eng. A. 212(1), 62–68 (1996)

    Article  Google Scholar 

  7. K. Okada, T. Yamaji, K. Kasai, Basic investigation of cvd method for manufacturing 6.5% Si steel sheet. ISIJ Int. 36(6), 706–713 (1996)

    Article  CAS  Google Scholar 

  8. T. Ros-Yáñez, D. Ruiz, J. Barros, Y. Houbaert, Advances in the production of high-silicon electrical steel by thermomechanical processing and by immersion and diffusion annealing. J. Alloy. Compd. 369(1–2), 125–130 (2004)

    Article  Google Scholar 

  9. R. Machado, A.H. Kasama, A.M. Jorge, C.S. Kiminami, W.J.B. Fo, C. Bolfarini, Evolution of the texture of spray-formed Fe–6.5 wt.% Si–1.0 wt.% Al alloy during warm-rolling. Mater. Sci. Eng. A. 449–451, 854–857 (2007)

    Article  Google Scholar 

  10. X.A. Fan, Z.Y. Wu, G.Q. Li, J. Wang, Z.D. Xiang, Z.H. Gan, High resistivity and low core loss of intergranular insulated Fe–6.5 wt.%Si/SiO2 composite compacts. Mater. Des. 89, 1251–1258 (2016)

    Article  CAS  Google Scholar 

  11. Z.Y. Cheng, J. Liu, Z.D. Xiang, J. Jia, Y.J. Bi, Effects of Cu addition on plasticity of Fe-6.5Si (wt.%) alloy at temperatures below 550 ℃. Intermetallics. 120, 106747 (2020)

    Article  CAS  Google Scholar 

  12. S. Ge, M. Isac, R.I.L. Guthrie, Progress in strip casting technologies for steel; Technical developments. ISIJ Int. 53(5), 729–742 (2013)

    Article  CAS  Google Scholar 

  13. M.L. Lobanov, G.M. Rusakov, A.A. Redikul Tsev, Electrotechnical anisotropic steel. Part 1. History of development. Met. Sci. Heat Treat. 53(7), 326–332 (2011)

    Article  CAS  Google Scholar 

  14. X. Wang, W. Zhang, Z. Liu, H. Li, G. Wang, Improvement on room-temperature ductility of 6.5 wt.% Si steel by stress-relief annealing treatments after warm rolling. Mater. Charact. 122, 206–214 (2016)

    Article  CAS  Google Scholar 

  15. X. Wang, H. Li, Z. Liu, H. Liu, G. Wang, Z. Luo, F. Zhan, S. Chen, L. Lyu, Effect of cooling rate on bending behavior of 6.5 wt.% Si electrical steel thin sheets fabricated by strip casting and rolling. Mater. Charact. 111, 67–74 (2016)

    Article  CAS  Google Scholar 

  16. J.A. Schey, Fracture in rolling processes. J. Appl. Metalwork. 1(2), 48–59 (1980)

    Article  CAS  Google Scholar 

  17. Y.I. Ustinovshchikov, I.V. Sapegina, Ordering of Fe-Si phases. Inorg. Mater. 41(1), 24–31 (2005)

    Article  CAS  Google Scholar 

  18. D. Wang, C. Zhou, A top side-pouring twin-roll caster for metals strips. J. Mater. Process. Technol. 214(4), 916–924 (2014)

    Article  CAS  Google Scholar 

  19. D. Xuan, C. Zhou, Y. Zhou, T. Jiang, B. Zhu, W. Fan, Effects of Fe-6.5 wt.%Si alloys prepared by different cooling methods on ordered structure and mechanical properties. Int. J. Adv. Manuf. Technol. 5, 63 (2022)

    Google Scholar 

  20. D. Xuan, C. Zhou, Y. Zhou, T. Jiang, B. Zhu, W. Fan, Effect of test temperature on tensile behavior of fe-6.5 wt.%Si alloy as-cast strip. J. Magn. Magn. Mater. 559, 169540 (2022)

    Article  CAS  Google Scholar 

  21. W. Österle, H. Wever, H.J. Bunge, Development of microstructure and texture of cold rolled α iron. Metal Sci. 17(7), 333–340 (1983)

    Article  Google Scholar 

  22. D. Zhao, F. Ye, B. Liu, H. Du, Y.B. Unigovski, E.M. Gutman, R. Shneck, Enhancing the formability of FeSi6.5 steel by the anodic polarization. Int. J. Miner. Metall. Mater. 29(11), 2072–2078 (2022)

    Article  CAS  Google Scholar 

  23. V.G. Gavriljuk, A.I. Tyshchenko, V.V. Bliznuk, I.L. Yakovleva, S. Riedner, H. Berns, Cold work hardening of high-strength austenitic steels. Steel Res. Int. 79(6), 413–422 (2008)

    Article  CAS  Google Scholar 

  24. G. Pintaude, Hardness as an indicator of material strength: a critical review. Crit. Rev. Solid State Mat. Sci. 48(5), 623–641 (2023)

    Article  CAS  Google Scholar 

  25. P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness. Mater. Sci. Eng. A. 529, 62–73 (2011)

    Article  CAS  Google Scholar 

  26. J.E. Wittig, G. Frommeyer, Deformation and fracture behavior of rapidly solidified and annealed iron-silicon alloys. Metall. Mater. Trans. A. 39(2), 252–265 (2008)

    Article  Google Scholar 

  27. S. Carlsson, P.L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Acta Mater. 49(12), 2179–2191 (2001)

    Article  CAS  Google Scholar 

  28. J. Jang, D. Son, Y. Lee, Y. Choi, D. Kwon, Assessing welding residual stress in A335 P12 steel welds before and after stress-relaxation annealing through instrumented indentation technique. Scr. Mater. 48(6), 743–748 (2003)

    Article  CAS  Google Scholar 

  29. Z. Zhang, W. Wang, H. Fu, J. Xie, Effect of quench cooling rate on residual stress, microstructure and mechanical property of an Fe–6.5Si alloy. Mater. Sci. Eng. A. 530, 519–524 (2011)

    Article  CAS  Google Scholar 

  30. C. Song, H. Yu, L. Li, T. Zhou, J. Lu, X. Liu, The stability of retained austenite at different locations during straining of I&Q&P steel. Mater. Sci. Eng. A. 670, 326–334 (2016)

    Article  CAS  Google Scholar 

  31. J. Chen, X. Yuan, Z. Hu, T. Li, K. Wu, C. Li, Improvement of resistance-spot-welded joints for dp 600 steel and a5052 aluminum alloy with Zn slice interlayer. J. Manuf. Process. 30, 396–405 (2017)

    Article  Google Scholar 

  32. S. Cui, I. Jung, Critical reassessment of the Fe-Si system. Calphad-Comput. Coupling Ph. Diagrams Thermochem. 56, 108–125 (2017)

    Article  CAS  Google Scholar 

  33. D. Xuan, C. Zhou, Y. Zhou, T. Jiang, W. Fan, Y. Mao, Effect of cooling rate on the order degree, residual stress, and room temperature mechanical properties of Fe-6.5 wt.%Si alloy. J. Magn. Magn. Mater. 571, 170550 (2023)

    Article  CAS  Google Scholar 

  34. Z. Cheng, H. Lu, J. Liu, M. Wendler, O. Volkova, Effect of ordered phases and microstructures on the iron loss of 6.5 wt.% Si electrical steel quenched at various cooling rates. Steel Res. Int. 93(7), 2100739 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhou, C., Xuan, D. et al. Effect of Low-temperature Annealing on Mechanical Properties of Warm-rolled High Silicon Steel Produced by Twin-roll Strip Casting. Metallogr. Microstruct. Anal. (2024). https://doi.org/10.1007/s13632-024-01072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13632-024-01072-3

Keywords

Navigation