Skip to main content
Log in

Modeling and Prediction of a 3G-980HF Spot Weld Shear Strength Using Response Surface Methodology

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

This study presents a predictive modeling approach for the resistance spot-welding (RSW) process of 1.2-mm-thick spot-welded sheets made of the third-generation advanced high-strength steel (3G-AHSS) known as 980HF steel. The study aims to ascertain the effect of predetermined welding process parameters on welding performance. The investigation considered welding parameters such as welding current, welding time, electrode force, and holding time. On the basis of the peak load, absorbed energy, microhardness, and microstructural characteristics, the quality of the RSW performance was evaluated. The Central Composite Design (CCD) of the Response Surface Method (RSM) was employed as a popular predictive modeling technique. The design of the experiment (DoE) approach was utilized to construct the CCD. The RSM model demonstrated high prediction accuracy with an efficiency of 98% for the peak load and 95% for the absorbed energy. The validity of the predictive model was confirmed through supplementary experiments, which accounted for 20% of the total designed experiments used in creating the model. The supplementary experiments involved randomly selected welding parameters within the predetermined welding process parameters range. The validation study indicated model efficiencies of 85.44% for the peak load and 81.84% for the absorbed energy. Microhardness measurements taken across the weld identified distinct zones, with an average microhardness value of 320 HV for the base metal (BM), 310 HV for the sub-critical heat-affected zone (SCHAZ), 400 HV for the intercritical heat-affected zone (ICHAZ), 550 HV for the upper critical heat-affected zone (UCHAZ), and 516 HV for the fusion zone (FZ). Overall, the results demonstrated the capability of the RSM model to predict the welding performance, thereby reducing the need for extensive experimental investigations, which save time and resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H.M. Mallaradhya, M. Vijay Kumar, R. Ranganatha, S. Darshan Lochan, Resistance spot welding: a review. Int. J. Mech. Prod. Eng. Res. Dev. 8, 403–418 (2018). https://doi.org/10.24247/ijmperdapr201846

    Article  Google Scholar 

  2. S.K. Hussein, O.S. Barrak, Optimization the resistance spot welding parameters of austenitic stainless steel and aluminum alloy using design of experiment metho. Eng. Tech. J. 34, 1383–1401 (2016)

    Article  Google Scholar 

  3. M. Tumuluru, Resistance Spot Welding Techniques for Advanced High-Strength Steels (AHSS) (Elsevier, 2015) https://doi.org/10.1016/B978-0-85709-436-0.00004-7

    Book  Google Scholar 

  4. M. Kimchi, D.H. Phillips, Resistance Spot Welding: Fundamentals and Applications for the Automotive Industry (Springer, 2017) https://doi.org/10.2200/s00792ed1v01y201707mec005

    Book  Google Scholar 

  5. J. Zhao, Z. Jiang, Thermomechanical processing of advanced high strength steels. Prog. Mater. Sci.. Mater. Sci. 94, 174–242 (2018). https://doi.org/10.1016/j.pmatsci.2018.01.006

    Article  CAS  Google Scholar 

  6. M. Pouranvari, S.P.H. Marashi, S.M. Mousavizadeh, The effect of welding parameters on the tensile-shear performance of dissimilar DP600/St14 resistance spot welds. AIP Conf. Proc. 1315, 831–836 (2010). https://doi.org/10.1063/1.3552554

    Article  ADS  CAS  Google Scholar 

  7. M. Pouranvari, Understanding the factors controlling the interfacial failure strength of advanced high-strength steel resistance spot welds: hardness vs. fracture toughness. Sci. Technol. Weld. Join. 23, 520–526 (2018). https://doi.org/10.1080/13621718.2017.1421303

    Article  CAS  Google Scholar 

  8. B. Hance, Advanced high-strength steel (AHSS) performance level definitions and targets. SAE Int. J. Mater. Manuf. (2018). https://doi.org/10.4271/2018-01-0629

    Article  Google Scholar 

  9. W. Bleck, F. Brühl, Y. Ma, C. Sasse, Materials and processes for the third-generation advanced high-strength steelswerkstoffe und prozesse für AHSS-Stähle der dritten generation. BHM Berg-Huettenmaenn. Monatsh. 164, 466–474 (2019). https://doi.org/10.1007/s00501-019-00904-y

    Article  CAS  Google Scholar 

  10. H.E. Jacqueline Noder, J.E. Gutierrez, A. Zhumagulov, J. Dykeman, C. Butcher, A comparative evaluation of third-generation advanced high-strength steels for automotive forming and crash applications. Materials (Basel). 14, 1–39 (2021). https://doi.org/10.3390/ma14174970

    Article  CAS  Google Scholar 

  11. H. Mohrbacher, The impact of AHSS on car making. Steel Times Int. 43, 12–13 (2019)

    Google Scholar 

  12. M. Shamsujjoha, C.M. Enloe, A.C. Chuang, J.J. Coryell, H. Ghassemi-Armaki, Mechanisms of paint bake response in resistance spot-welded first and third generation AHSS. Materialia. 15, 100975 (2021). https://doi.org/10.1016/j.mtla.2020.100975

    Article  CAS  Google Scholar 

  13. N. Muhammad, Y.H.P. Manurung, M. Hafidzi, S.K. Abas, G. Tham, E. Haruman, Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM. J. Mech. Sci. Technol. 26, 2365–2370 (2012). https://doi.org/10.1007/s12206-012-0618-x

    Article  Google Scholar 

  14. M. Kahn, Spot welding of advanced high strength steels, Masters Abstr. Int. (2007) 1–109. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Spot+Welding+of+Advanced+High+Strength+Steels#0.

  15. H.K. Hussein, I.R. Shareef, I.A. Zayer, Prediction of spot welding parameters using fuzzy logic controlling. Eastern-Eur. J. Enterp. Technol. 5, 57–64 (2019). https://doi.org/10.15587/1729-4061.2019.172642

    Article  CAS  Google Scholar 

  16. M. Vigneshkumar, P.A. Varthanan, Comparison of RSM and ANN model in the prediction of the tensile shear failure load of spot welded AISI 304/316 L dissimilar sheets. Int. J. Comput. Mater. Sci. Surf. Eng.Comput. Mater. Sci. Surf. Eng. 8, 114–130 (2019). https://doi.org/10.1504/IJCMSSE.2019.102292

    Article  Google Scholar 

  17. P. Sivaraj, M. Seeman, D. Kanagarajan, R. Seetharaman, Influence of welding parameter on mechanical properties and microstructural features of resistance spot welded dual phase steel sheets joint. Mater. Today Proc. 22, 558–562 (2020). https://doi.org/10.1016/j.matpr.2019.08.201

    Article  CAS  Google Scholar 

  18. I. Hajiannia, M. Shamanian, M. Atapour, R. Ashiri, Evaluation of weldability and mechanical properties in resistance spot welding of ultrahigh-strength TRIP1100 steel. SAE Int. J. Mater. Manuf. 12, 4–18 (2018). https://doi.org/10.4271/05-12-01-0001

    Article  Google Scholar 

  19. C. Sawanishi, T. Ogura, K. Taniguchi, R. Ikeda, K. Oi, K. Yasuda, A. Hirose, Mechanical properties and microstructures of resistance spot welded DP980 steel joints using pulsed current pattern. Sci. Technol. Weld. Join. 19, 52–59 (2014). https://doi.org/10.1179/1362171813Y.0000000165

    Article  CAS  Google Scholar 

  20. M. Shojaee, A.R.H. Midawi, B. Barber, H. Ghassemi-Armaki, M. Worswick, E. Biro, Mechanical properties and failure behavior of resistance spot welded third-generation advanced high strength steels. J. Manuf. Process. 65, 364–372 (2021). https://doi.org/10.1016/j.jmapro.2021.03.047

    Article  Google Scholar 

  21. K. Zhou, L. Cai, Study on effect of electrode force on resistance spot welding process. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4893968

    Article  PubMed  PubMed Central  Google Scholar 

  22. T.P. Kasih, A. Kharisma, A. Suryanto, Optimization of spot welding process parameters on dissimilar and unequal thickness of metal sheets by using Taguchi technique. IOP Conf. Ser. Earth Environ. Sci. (2018). https://doi.org/10.1088/1755-1315/195/1/012036

    Article  Google Scholar 

  23. M. Tutar, H. Aydın, A. Bayram, The optimisation of welding parameters for electrical resistance spot-welded TWIP steels using a taguchi method. Pamukkale Univ J Eng. Sci. 24, 650–657 (2018). https://doi.org/10.5505/pajes.2018.88965

    Article  Google Scholar 

  24. T. Tóth, K. Májlinger, Optimization of resistance spot welded advanced high strength steel joints with response surface based design of experiment method (2018) 2–4. https://doi.org/10.13140/RG.2.2.33268.60800.

  25. E. Olorundaisi, T. Jamiru, T.A. Adegbola, O.F. Ogunbiyi, Modeling and optimization of operating parameters using RSM for mechanical behaviour of dual phase steels. Mater. Res. Express. 6, 1–14 (2019). https://doi.org/10.1088/2053-1591/ab430e

    Article  CAS  Google Scholar 

  26. ASTM E8, ASTM E8/E8M standard test methods for tension testing of metallic materials 1, Annu. B. ASTM Stand. 4. (2010) 1–27. https://doi.org/10.1520/E0008.

  27. American Welding Socity (AWS), Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials, 3rd edn (AWS, 2012)

    Google Scholar 

  28. ASTM Standard, E384 (2017) Standard test method for microindentation hardness of materials. ASTM Int 1–40. https://doi.org/10.1520/E0384-17

  29. T.L.V.D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am. Soc. Agric. Biol. Eng. 50, 885–900 (2007)

    Google Scholar 

  30. S. Akulwar, A. Akela, D. Satish Kumar, M. Ranjan, Resistance spot welding behavior of automotive steels. Trans. Indian Inst. Met. (2021). https://doi.org/10.1007/s12666-020-02155-9

    Article  Google Scholar 

  31. Y. Lu, A. Peer, T. Abke, M. Kimchi, W. Zhang, Heat-affected Zone Softening of Resistance Spot-welded 3T Stack-ups of AHSS. Sheet Met. Weld. Conf. XVII. I, 1–12 (2018)

    Google Scholar 

  32. H. Wu, B. Ju, D. Tang, R. Hu, A. Guo, Q. Kang, D. Wang, Effect of Nb addition on the microstructure and mechanical properties of an 1800MPa ultrahigh strength steel. Mater. Sci. Eng. A. 622, 61–66 (2015). https://doi.org/10.1016/j.msea.2014.11.005

    Article  CAS  Google Scholar 

  33. N. Nadimi, R. Yadegari, M. Pouranvari, Resistance spot welding of quenching and partitioning (Q&P) third-generation advanced high-strength steel: process–microstructure–performance. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 54, 577–589 (2023). https://doi.org/10.1007/s11661-022-06903-y

    Article  ADS  CAS  Google Scholar 

  34. A. Ghatei-Kalashami, S. Zhang, M. Shojaee, A.R.H. Midawi, F. Goodwin, N.Y. Zhou, Failure behavior of resistance spot welded advanced high strength steel: the role of surface condition and initial microstructure. J. Mater. Process. Technol. 299, 117370 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117370

    Article  CAS  Google Scholar 

  35. D.C. Ramachandran, A.R.H. Midawi, M. Shojaee, O. Sherepenko, H. Ghassemi-Armaki, E. Biro, A comprehensive evaluation of tempering kinetics on 3rd generation advanced high strength steels. Materialia. 26, 101644 (2022). https://doi.org/10.1016/j.mtla.2022.101644

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Mechanical Engineering Department at the University of Benghazi and the CAMJ group at the University of Waterloo for facilitating the microhardness and SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelbaset R. H. Midawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhemri, M.N., Elmabrouk, O., Haidar, F. et al. Modeling and Prediction of a 3G-980HF Spot Weld Shear Strength Using Response Surface Methodology. Metallogr. Microstruct. Anal. (2024). https://doi.org/10.1007/s13632-024-01057-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13632-024-01057-2

Keywords

Navigation