Skip to main content
Log in

Archaeological Silver Embrittlement and Fracture Mechanics Applications

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The current knowledge of archaeological silver embrittlement is summarized. This knowledge comes from several invasive (sampling) investigations that have provided much information unobtainable from non-invasive studies. In addition, microscale fracture models and qualitative basic fracture mechanics concepts are discussed with respect to the cracking behaviour of embrittled objects. The usefulness of some of the knowledge and fracture mechanics considerations for non-invasive examinations is illustrated in a discussion of severe cracking in the Enkomi Cup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Ashkenazi, How can fracture mechanics and failure analysis assist in solving mysteries of ancient metal artifacts? Archaeol. Anthropol. Sci. 12, 34 (2020). https://doi.org/10.1007/s12520-019-00970-w

    Article  Google Scholar 

  2. R.J.H. Wanhill, Archaeological silver embrittlement: a metallurgical inquiry. Technical Report NLR-TP-2002-224, National Aerospace Laboratory, Amsterdam, The Netherlands (2002). https://doi.org/10.13140/RG.2.2.11244.08321

  3. R.J.H. Wanhill, Brittle archaeological silver: a fracture mechanisms and mechanics assessment. Archaeometry. 45(4), 625–636 (2003)

    Article  Google Scholar 

  4. R.J.H. Wanhill, Stress corrosion cracking in ancient silver. Stud. Conserv. 58(1), 41–49 (2013)

    Article  CAS  Google Scholar 

  5. R.J.H. Wanhill, Significance of discontinuous precipitation of copper in ancient silver. Metallogr. Microstruct. Anal. 1(6), 261–268 (2012). https://doi.org/10.1007/s13632-012-0041-9

    Article  CAS  Google Scholar 

  6. R.J.H. Wanhill, G. Giumlia-Mair, The Enkomi Cup: macrophotographic damage assessment. Hist. Metall. (In press, 2023).

  7. O. Oudbashi, R.J.H. Wanhill, Long-term embrittlement of ancient copper and silver alloys. Heritage. 2021(4), 2287–2319 (2021). https://doi.org/10.3390/heritage4030130

    Article  Google Scholar 

  8. R.J.H. Wanhill, Case histories of ancient silver embrittlement. J. Fail. Anal. Preven. 11, 178–185 (2011). https://doi.org/10.1007/s11668-010-9429-5

    Article  Google Scholar 

  9. R.J.H. Wanhill, J.P.H.M. Steijaert, R. Leenheer, J.F.W. Koens, Damage assessment and preservation of an Egyptian silver vase (300–200 BC). Archaeometry. 40, 123–137 (1998)

    Article  CAS  Google Scholar 

  10. J. Děd, A. Šilhová, Korozní poškození stříbrných předmětů z archeologických nálezů (Corrosion damage of silver objects from archaeological findings), in Sborník Konference Konzervátorů a Restaurátorů Plzeň (Proceedings of Conservators and Restorers Pilsen). Technical Museum of Brno, Brno, in Czech (2005), pp. 44–48.

  11. J. Vaníčková, J. Dĕd, P. Bartuška, P. Lejček, Intergranular failure of Roman silver artefacts. Mater. Sci. Forum. 567–568, 213–216 (2007)

    Article  Google Scholar 

  12. R.J.H. Wanhill, T. Hattenberg, J.P. Northover, EBSD of corrosion, deformation and precipitation in the Gundestrup Cauldron, in ed. by A.C. Ferreira da Silva, P.M. Homem, Ligas Metálicas: Investigação e conservação (Metallic Alloys: Research and Conservation). Faculty of Letters, University of Porto, Porto (2008), pp. 46–61.

  13. A. Jouttijärvi, The Gundestrup Cauldron: metallurgy and manufacturing techniques. Mater. Manuf. Process. 24, 960–966 (2009)

    Article  Google Scholar 

  14. B.D. Lichter, H. Lu, W.F. Flanagan, Strain-enhanced dissolution: a model for transgranular stress-corrosion cracking, in ed. by M. Matsumura, H. Nagano, K. Nakasa, Y. Isomoto, Proceedings of the Second International Conference on Environment Sensitive Cracking and Corrosion Damage, ESCCD 2001 (Hiroshima) (Nishiki Printing Ltd., Okayama, Japan, 2001), pp. 271–278.

  15. W.F. Flanagan, L. Zhong, B.D. Lichter, A mechanism for transgranular stress-corrosion cracking. Metall. Mater. Trans. A. 24A, 553–559 (1993)

    Article  CAS  Google Scholar 

  16. T. Magnin, Advances in Corrosion-Deformation Interactions (Trans Tech Publications, Zurich-Uetikon, 1996), pp.114–124

    Google Scholar 

  17. T. Magnin, A. Chambreuil, B. Bayle, The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys. Acta Mater. 44(4), 1457–1470 (1996)

    Article  CAS  Google Scholar 

  18. www.pioneerburials.com: Impact of Human Decomposition on Groundwater—Literature Review, Pioneer Natural Burial Corporation, Davis, CA (2009).

  19. F.C. Thompson, A.K. Chatterjee, The age-embrittlement of silver coins. Stud. Conserv. 1(3), 115–126 (1954)

    CAS  Google Scholar 

  20. G.M. Ingo, E. Angelini, T. De Caro, G. Bultrini, Combined use of surface and micro-analytical techniques for the study of ancient coins. Appl. Phys. A. 79, 171–176 (2004)

    Article  CAS  Google Scholar 

  21. J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, The equilibrium of linear arrays of dislocations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, 351–364 (1951). https://doi.org/10.1080/14786445108561060

    Article  Google Scholar 

  22. A.N. Stroh, The formation of cracks as a result of plastic flow. Proc. R. Soc. Lond. Ser. A. 223, 404–414 (1954)

    Article  Google Scholar 

  23. E. Smith, J.T. Barnby, Crack nucleation in crystalline solids. Met. Sci. J. 1(1), 56–64 (1967)

    Article  CAS  Google Scholar 

  24. S.P. Lynch, A review of underlying reasons for intergranular cracking for a variety of failure modes and materials and examples of case histories. Eng. Fail. Anal. 100, 329–350 (2019)

    Article  CAS  Google Scholar 

  25. H. Tada, P.C. Paris, G.R. Irwin, Finite parallel cracks in an infinite plane, in The Stress Analysis of Cracks Handbook, Section 14.5. (Del Research Corporation, St. Louis, 1973)

    Google Scholar 

  26. A.E. Werner, Two problems in the conservation of antiquities: corroded lead and brittle silver, in Application of Science in Examination of Works of Art. ed. by W.J. Young (Museum of Fine Arts, Boston, 1965), pp.96–104

    Google Scholar 

  27. G. Stawinoga, Die Tasse des Khans: Die Restaurierung einer mittelalterlichen Silbertasse (The Khan Cup: the restoration of a mediaeval silver cup). Arbeitsblätter für Restauratoren. 30(2), 137–142 (1997). (in German)

    Google Scholar 

  28. R. M. Organ, The current status of the treatment of corroded metal artifacts. In: Brown, B.F. et al. (eds.), Corrosion and Metal Artifacts ‒ A Dialogue Between Conservators and Archaeologists and Corrosion Scientists. NBS Special Publication 479, U.S. Department of Commerce/National Bureau of Standards, Washington, DC 20230/4, USA (1977), pp. 107–142. https://repository.si.edu/handle/10088/42959.

  29. H.J. Plenderleith, The Conservation of Antiquities and Works of Art: Treatment, Repair, and Restoration (Oxford University Press, London, UK, 1956)

    Google Scholar 

  30. M. Janssen, J. Zuidema, R.J.H. Wanhill, Fracture Mechanics, 2nd edn (Delft University Press, Delft, 2002), pp.260–263

    Google Scholar 

  31. Cyprus Antiquities Department Archive, available via the APSIDA Repository of the UNESCO Chair on Digital Cultural Heritage at the Cyprus University of Technology. Silver cup from Enkomi (14th century B.C.) - UOM (252). Occupied Towns - Displaced Municipalities of the Republic of Cyprus: A Brief Historical Review. Committee of Cyprus Occupied Municipalities, Nicosia, Cyprus (2012), p. 192.

Download references

Acknowledgments

My thanks to the colleagues and institutions who over the years have provided information and assistance: Pavel Bartuška, Co Dalemans, Jiří Děd, Alessandra Giumlia-Mair, Tim Hattenberg, Roel Jansen, Ineke Joosten, Ron Leenheer, Ronny Meijers, Mansoure Nezarati, Peter Northover, Gerhard Stawinoga, Jarka Vaníčková; Museum het Valkhof, Royal Netherlands Aerospace Centre; and of course the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. H. Wanhill.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the journal Metallography, Microstructure, and Analysis on Archaeometallurgy. The issue was organized by Dr. Patricia Carrizo, National Technological University – Mendoza Regional, and Dr. Omid Oudbashi, Art University of Isfahan and The Metropolitan Museum of Art, on behalf of the ASM International Archaeometallurgy Committee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanhill, R.J.H. Archaeological Silver Embrittlement and Fracture Mechanics Applications. Metallogr. Microstruct. Anal. 12, 219–232 (2023). https://doi.org/10.1007/s13632-023-00958-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-00958-y

Keywords

Navigation