Skip to main content
Log in

Greek and Roman Copper Alloy Coins (Fifth Century BC—Third Century AD): from Microstructures to Manufacturing Process

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

A Publisher Correction to this article was published on 24 April 2023

This article has been updated


In this article, we are focusing on the manufacturing techniques of Greek and Roman copper alloy coins (fifth century BC—third century AD). Thanks to the metallographic analysis of the objects remaining today, it is possible to trace their metallurgical history and to reconstruct the different stages of the coin’s manufacturing process in antiquity. The 135 coins studied by various methods (X-ray fluorescence, scanning electron microscopy, Vickers hardness) show a large range of elemental compositions. The most represented alloy in our samples is a ternary alloy of copper, lead and tin, but other alloys were also used (Cu–Pb, Cu–Sn, Cu–Sn–Pb, Cu–Ag, Cu–Zn, and some ‘pure’ copper coins). Coins also show diversity in terms of microstructures, representing either a simple process (casting followed by striking) or a more complex process with a recrystallized microstructure (67% of our sample). The grain size of these recrystallized microstructures provides the metallurgical state of the material. Furthermore, Vickers hardness measurements taken on coins provided us information on the impact of the minting process on the coin but also, depending on the alloys, provides indications on the state of solidification and shaping of the material. The average hardness of cast state alloys is 97.5 HV compared to 119.3 HV for recrystallized samples. Some recrystallized samples with a hardness lower than expected suggest that annealing has probably been carried out before striking. The resulting alloy is easier to form and strike. Sessions of experimental archaeology allowed the production of samples representative of ancient conditions and the comparison of these samples with actual archaeological samples. Hardness measurements on these reproduced samples do not exceed 152 HV, with minimal recrystallization, whereas some archaeological samples (15%) may reach values between 150 and 214 HV. This hardness variation indicates higher deformations due to several cycles of hammering and annealing on archaeological samples that were not previously observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Change history


  1. We are grateful to Maryse Blet-Lemarquand, Fai Tcha (IRAMAT—Centre Ernest-Babelon UMR 7065) and CEMHTI team for FNA measurement and equipment availability.

  2. Mean Hardness Value 154.7HV5 (26/10/2016). Issued by: EURO PRODUCTS LTD CALIBRATION LABORATORY. Certificate Number: 276196.

  3. Mean Hardness Value 162.4HV0.2 (17/02/2021). Issued by: EURO PRODUCTS LTD CALIBRATION LABORATORY. Certificate Number: 354360. HV0.2 Vickers Reference Hardness Block, EN ISO 6507–3: 2018, ASTM E92: 2017, ASTM E384 : 2017.

  4. Hammering then annealing to oxidize copper and remove these copper oxides with blanching process to have a rich silver layer [22].

  5. Flans are manufactured using the casting chaplet technique and are then subjected to a heat treatment (650 °C) for 30 min. When they are removed from the oven, the flans are then immediately struck (hot-state) to obtain a coin.


  1. G.F. Hill, Ancient methods of coining. Numis. Chron. J. Royal Numis. Soc. 2, 1–vii (1922)

    Google Scholar 

  2. M. Amandry, La monnaie antique: Grèce et Rome, VIIe siècle av. J.-C.-Ve siècle apr. J.-C. (Ellipses, Paris, 2017)

    Google Scholar 

  3. T. Faucher, F. Téreygeol, L. Brousseau, A. Arles, À la recherche des ateliers monétaires grecs : l’apport de l’expérimentation. Rev. Numis. 6(165), 43–80 (2009).

    Article  Google Scholar 

  4. C. Hartmann, F. Hammerl, W. Volk, Experimental analysis of Roman coin minting. J. Archaeol. Sci. Rep. 25, 498–506 (2019).

    Article  Google Scholar 

  5. T. Faucher, Frapper monnaie. la fabrication des monnaies de bronze à Alexandrie sous les Ptolémées. Alexandrie, Egypte: Centre d’études alexandrines, (2013).

  6. M. Cowell, W. A. Oddy, Metallurgy in numismatics: symposium held at the British museum in September 1994. London: Royal Numismatic Society, (1998).

  7. M. Blet-Lemarquand, B. Gratuze, J.-N. Barrandon, L’analyse élémentaire des monnaies : adéquation entre les problématiques envisagées, les alliages étudiés et les méthodes utilisées. Lausanne: Éd. du Zèbre, (2015).

  8. A. Heginbotham et al., An evaluation of inter-laboratory reproducibility for quantitative XRF Of historic copper alloys, U S A, p. 12, (2010).

  9. M. Nicholas, P. Manti, Testing the applicability of handheld portable XRF to the characterisation of archaeological copper alloys, p. 13, (2014).

  10. D. Bourgarit, B. Mille, Provenance du cuivre et alliages, in Circulation et provenance des matériaux dans les sociétés anciennes. ed. by P. Dillmann, L. Bellot-Gurlet (Editions des archives contemporaines, 2014), pp.103–132

    Chapter  Google Scholar 

  11. J. Barbery, Traitements thermiques du cuivre et de ses alliages. Traitements des métaux. (1991).

    Article  Google Scholar 

  12. ASTM International, Test methods for determining average grain size, ASTM International, (2010)

  13. D.A. Scott, Metallography and microstructure of ancient and historic metals (Getty Conservation Institute in association with Archetype Books, Marina del Rey, CA, 1991)

    Google Scholar 

  14. M.F. Guerra, The study of the characterisation and provenance of coins and other metalwork using XRF, PIXE and Activation Analysis, in Radiation in art and archeometry. (Elsevier, 2000), pp.378–416

    Chapter  Google Scholar 

  15. P. Valério, R.J.C. Silva, M.F. Araújo, A.M.M. Soares, L. Barros, A multianalytical approach to study the Phoenician bronze technology in the Iberian Peninsula—a view from Quinta do Almaraz. Mater. Charact. 67, 74–82 (2012).

    Article  CAS  Google Scholar 

  16. J. R. Davis, ASM International, Copper and copper alloys. Materials Park, OH: ASM International, (2001).

  17. D. Dungworth, An experimental study of early bronze smithing techniques, Accident. Experiment. Archaeometall., 149–152, (2013).

  18. M. Pernot, 3. Études technologiques, in Le dépôt d’Évans (Jura) : et les dépôts de vaisselles de bronze en France au Bronze final, Dijon: ARTEHIS Éditions, 2020, p. 65‑93. Consulté le: 14 décembre 2021. [En ligne]. Disponible sur:

  19. M. Pernot, Quatre mille ans d’histoire du cuivre: fragments d’une suite de rebonds. (2017).

  20. F. Blondé et École française d’Athènes, Éd., L’artisanat en Grèce ancienne: filières de production: bilans, méthodes et perspectives. Villeneuve d’Ascq, France : [Athens]: Presses universitaires du Septentrion ; École française d’Athènes, 2016.

  21. F. Adamski et al., Un atelier monétaire gaulois près de Poitiers : les Rochereaux à MignéAuxances (Vienne). Gallia. 65(1), 231–272 (2008).

    Article  Google Scholar 

  22. A. Arles, « Entre monnayage officiel et faux-monnayage : la fabrication de la monnaie au marteau en France (XIIIe - XVIIe siècles) : approche physico-chimique, expérimentale et historique », phdthesis, Université d’Orléans, 2009. Consulté le: 26 novembre 2020. [En ligne]. Disponible sur:

  23. « Silver Copper Alloys », Thessco. (consulté le 11 avril 2022).

  24. M. Blet-Lemarquand, Les analyses élémentaires de monnaies de bronze grecques réalisées au Centre Ernest-Babelon de l’IRAMAT : méthode, résultats, synthèses, Aux origines de la monnaie fiduciaire. Traditions métallurgiques et innovations numismatiques. Actes de l’atelier international des 16 et 17 novembre 2012 à Tours, 2012, Consulté le: 19 octobre 2020. [En ligne]. Disponible sur: _de_bronze_grecques_r%C3%A9alis%C3%A9es_au_Centre_Ernest_Babelon_de_l_IRAMAT_ m%C3%A9thode_r%C3%A9sultats_synth%C3%A8se

  25. T. Faucher, Gravure et composition métallique des monnaies lagides, Rev. Numis., 95–108, (2010).

  26. F. Pilon, L’atelier monétaire de Châteaubleau: officines et monnayages d’imitation du IIIe siècle dans le nord-est de l’Empire (CNRS éditions, Paris, 2016)

    Google Scholar 

  27. J. Artru, G. Sarah, (2022) De la sphère coulée à la monnaie frappée. L’utilisation de moules sphériques bivalves pour la production des flans monétaires en argent dans le monde grec (Ve-IIIe siècles av. J.-C.) (RN 179–2022). Revue Numismatique, 179.

  28. L. Collini, Copper alloys–early applications and current performance–enhancing processes (InTech, 2012)

    Book  Google Scholar 

  29. B.S. Ottaway, Q. Wang, Casting experiments and microstructure of archaeologically relevant bronzes (Archaeopress, Oxford, England, 2004)

    Google Scholar 

  30. F. Pilon, Four coin production techniques used in three officinae of Châteubleau (ca 260–280 AD) », Xiii Congreso Internacional De Numismatica Madrid 2003 Actas Proceedings Actes Vol 1 2005 Isbn 84 8181 264 1 Pags 793 802, Consulté le: 6 septembre 2021. [En ligne]. Disponible sur: e_of_Ch%C3%A2teublau_ca_260_280_AD_

  31. S. Schmitt, Histoire naturelle, Pline l’Ancien. Paris: Gallimard, (2013).

  32. J. Condamin, J. Guey, M. Picon, Techniques romaines. Rev. Numis. 7(6), 123–133 (1965).

    Article  Google Scholar 

Download references


The results presented here aggregates the work done by three Master degree students (Tobias Heal, Lucie Pichon, and Clarence Pambu) and one student of the Technological Institute of Bordeaux, Maël Gancel (IUT Bordeaux and I2M laboratory). This study is part of my PhD research held at the laboratory Archéosciences Bordeaux, to which I belong. I held there a research contract in the framework of the project “Frapper Monnaie”, directed by Dr. Thomas Faucher (Centre d’Etudes Alexandrines—UAR 3134 CNRS) and funded by the University of Bordeaux Montaigne and the Region Nouvelle-Aquitaine.

Author information

Authors and Affiliations



Various contributors have made this article possible: Corinne Arvieu (Institut de Mécanique et d'Ingénierie (I2M) de Bordeaux) for hardness equipment availability and discussion. Sophie Beurier-Rousset (English Teacher, Lycée Lavoisier-Mulhouse) for her corrections and advice. Maryse Blet-Lemarquand, Fai Tcha (IRAMAT—Centre Ernest-Babelon UMR 7065) and CEMHTI team for FNA measurement and equipment availability. Thomas Faucher (Centre d’Etudes Alexandrines—UAR 3134 CNRS) for his corrections and advices. Yannick Lefrais (Archéosciences Bordeaux, UMR 6034) for his help and advices with XRF and MEB-EDX measures and equipment maintenance.

Corresponding author

Correspondence to Alexandre BODET.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the journal Metallography, Microstructure, and Analysis on Archaeometallurgy. The issue was organized by Dr. Patricia Carrizo, National Technological University—Mendoza Regional, and Dr. Omid Oudbashi, Art University of Isfahan and The Metropolitan Museum of Art, on behalf of the ASM International Archaeometallurgy Committee.

Supplementary Information

Below is the link to the electronic supplementary material.

Figure S1: Coins before cutting

Supplementary file1 (TIF 13385 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BODET, A. Greek and Roman Copper Alloy Coins (Fifth Century BC—Third Century AD): from Microstructures to Manufacturing Process. Metallogr. Microstruct. Anal. 12, 349–369 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: