Skip to main content

Effect of Cooling Rate on Phase Transformation Kinetics and Microstructure of Nb–Ti Microalloyed Low Carbon HSLA Steel

Abstract

Nb–Ti microalloyed low carbon high strength low alloy (HSLA) steels are used to fabricate components, particularly for the automobile and piping applications requiring optimum combination of mechanical properties along with good weldability. These properties depend on the transformed ferrite microstructure and grain size obtained after cooling from hot rolling temperatures which are always well above the austenitizing temperature. Hence, an attempt was made to study the austenite decomposition (phase transformation) kinetics and the accompanying microstructural evolution in Nb–Ti microalloyed steel by subjecting it to austenitization at 1100 °C for 3 min followed by cooling at different rates ranging from 1 to 100 °C/sec in a B\(\ddot{a}\)hr DIL 805 A/D dilatometer. The first derivative method was employed to identify critical transformation temperatures from the dilation curves. A modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) analysis (used for non-isothermal conditions) was carried out to find the time exponent (n’) values controlling the rate of transformation at different cooling rates. The nature of transformed ferrite was observed to change from polygonal to acicular type, and its grain size was found to decrease with an increase in cooling rate. EBSD analysis also revealed the cooling rate to have a profound effect on the microtexture evolution of the concerned alloy. The “\(\gamma\)” fibre and rotated cube components are replaced by the transformed copper (“\(\alpha\)” fibre) components owing to faster transformation and lack of recrystallization of transformed \(\alpha \) with increase in cooling rate. Finally, a power law and logarithmic relationship of grain size and microhardness with the applied cooling rate were established.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. C.I. Garcia, Automotive Steels: Design, Metallurgy, Processing and Applications, in High strength low alloyed (HSLA) steels. ed. by R. Rana, S.B. Singh (Woodhead Publishing, Elsevier, 2017), pp. 145–168

    Google Scholar 

  2. T. Inoue, R. Ueji, Improvement of strength, toughness and ductility in ultrafine-grained low-carbon steel processed by warm bi-axial rolling. Mater. Sci. Eng. A. 786, 139415 (2020)

    CAS  Article  Google Scholar 

  3. F.B. Pickering, Microalloying 75 (International Symposium on HSLA Steels, NY, 1975), pp. 9–15

    Google Scholar 

  4. T. Tanaka, In: International Conference on HSLA Steels. N.S.W: Wollongong; 6 1984

  5. C.J. Crisbacher, J.H. Gross, R.D. Stout, J.J. Todaro, In: International Symposium on High Performance Steels for Structural Applications. Ohio: Clevland, 75 1995

  6. C.I. Garcia, A.J. DeArdo, E. Raykin, J.D. Defilippi, In: international symposium on high performance steels for structural applications. Ohio: Clevland, 155 1995

  7. S. Chatterjee, N.S. Misra, Evolution of acicular ferritic microstructure in a titanium bearing HSLA steel. Steel Res. Int. 65, 138–145 (1994)

    CAS  Article  Google Scholar 

  8. M.F. Mekkawy, K.A. El-Farwakhry, M.L. Mishreky, M.M. Eissa, Effect of interrupted accelerated cooling on mechanical properties and structure of vanadium and titanium microalloyed steel bars. Mater. Sci. Technol. 7(1), 28–36 (1991)

    CAS  Article  Google Scholar 

  9. A. Streibelberger, R. Kaspar, O. Pawelski, Improving mechanical properties of microalloy steels by modified thermomechanical treatments. Mater. Sci. Technol. 1(2), 121–127 (1985)

    Article  Google Scholar 

  10. Y. Hai-Long, D. Lin-Xiu, W. Guo-Dong, L. Xiang-Hua, Development of a hot-rolled low carbon steel with high yield strength. ISIJ Int. 46(5), 754–758 (2006)

    Article  Google Scholar 

  11. J. Fernández, S. Illescas, J.M. Guilemany, J.M., Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel. Mater. Lett. 61, 2389–2392 (2007)

    Article  CAS  Google Scholar 

  12. A. Grajcar, S. Lesz, Influence of Nb microaddition on a microstructure of low-alloyed steels with increased manganese content. Mater. Sci. Forum. 706, 2124–2129 (2012)

    Article  CAS  Google Scholar 

  13. D.Q. Bai, S. Yue, T.M. Maccagno, J.J. Jonas, Effect of deformation and cooling rate on the microstructures of low carbon Nb-B steels. ISIJ Int. 38, 371–379 (1998)

    CAS  Article  Google Scholar 

  14. P. Palček, B. Hadzima, M. Chalupová, Experimental methods in engineering materials (in Slovak) Žilina, EDIS ŽU Žilina, ISBN 80-8070-179-2 2004

  15. J. Calvo, I.H. Jung, A.M. Elwazri, D.Q. Bai, S. Yue, Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels. Mater. Sci. Eng., A. 520(1–2), 90–96 (2009)

    Article  CAS  Google Scholar 

  16. P. Gong, E.J. Palmiere, W. Rainforth, Dissolution and precipitation behaviour in steels microalloyed with niobium during thermomechanical processing. Acta Mater. 97, 392–403 (2015)

    CAS  Article  Google Scholar 

  17. Y. Shu-Biao, S. Xin-Jun, L. Qing-You, Z. Zhi-Bo, Influence of deformation of low-carbon and high Nb-containing steel during continuous cooling. J. Iron. Steel Res. Int. 17(2), 43–47 (2010)

    Article  Google Scholar 

  18. M.C. Zhao, K. Yang, F. Xiao, Y. Shan, Continuous cooling transformation of undeformed and deformed low carbon pipeline steels. Mater. Sci. Eng., A. 355(1–2), 126–136 (2003)

    Article  CAS  Google Scholar 

  19. M.G. Mecozzi, J. Sietsma, S. Van der Zwaag, Analysis of γ→α transformation in a Nb micro-alloyed C-Mn steel by phase field modelling. Acta Mater. 54(5), 1431–1440 (2006)

    CAS  Article  Google Scholar 

  20. M. Morawiec, A. Skowronek, M. Król, A. Grajcar, Dilatometric analysis of the austenite decomposition in undeformed and deformed low-carbon structural steel. Materials. 13, 5443 (2020)

    CAS  Article  Google Scholar 

  21. T.A. Kop, J. Sietsma, S. Van Der Zwaag, Dilatometric analysis of phase transformations in hypo-eutectoid steels. J. Mater. Sci. 36, 519–526 (2001)

    CAS  Article  Google Scholar 

  22. H. Boyer, Atlas of isothermal transformation and cooling transformation diagrams (Material Park, Ohio, 1977)

    Google Scholar 

  23. B.T. Alexandrov, J.C. Lippold, Single sensor differential thermal analysis of phase transformations and structural changes during welding and postweld heat treatment. Weld. World. 51, 48–59 (2007)

    CAS  Article  Google Scholar 

  24. M.I. Barrena, J.M.G.D. Salazar, L. Pascual, Determination of the kinetic parameters in magnesium alloy using TEM and DSC techniques[J]. J. Therm. Anal. Calorim. 113(2), 713–720 (2013)

    CAS  Article  Google Scholar 

  25. J.L. Béchade, D. Menut, S. Doriot, X-ray diffraction analysis of secondary phases in zirconium alloys before and after neutron irradiation at the MARS synchrotron radiation beamline. J. Nucl. Mater. 437(1–3), 365–372 (2013)

    Article  CAS  Google Scholar 

  26. O.N. Mohanty, A.N. Bhagat, Electrical resistivity and phase transformation in steels. Mater. Wiss. Und Werkst. 34(1), 96–101 (2003)

    CAS  Article  Google Scholar 

  27. Y.E. Smith, A.P. Coldren, R.L. Cryderman, Toward Improved Ductility and Toughness, Climax molybdenum company (Japan) Ltd, Tokyo, 119–142 1972

  28. A. Ghosh, S. Das, S. Chatterjee, P. Ramachandra Rao, Effect of cooling rate on structure and properties of an ultra-low carbon HSLA-100 grade steel. Mater. Charact. 56, 59–65 (2006)

    CAS  Article  Google Scholar 

  29. R. Shukla, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon microalloyed steel for pipeline application. Mater. Sci. Eng. A. 587, 201–208 (2013)

    CAS  Article  Google Scholar 

  30. S. Kim, S.-H. Choi, S.-H. Kim, S.-J. Seo, I.S. Suh, Influence of micro-texture on delamination of hot-rolled high strength low alloyed steel sheets. HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015. Conference Proceedings. Springer International Publishing, 267–271 2016

  31. L. Storojeva, D. Ponge, R. Kaspar, D. Raabe, Development of microstructure and texture of medium carbon steel during heavy warm deformation. Acta Mater. 52, 2209–2220 (2004)

    CAS  Article  Google Scholar 

  32. H.-T. Liu, H.-L. Li, J. Schneider, Y. Liu, G.D. Wang, Effects of coiling temperature after hot rolling on microstructure, texture, and magnetic properties of non-oriented electrical steel in strip casting processing route. Steel Res. Int. 87, 1256–1263 (2016)

    CAS  Article  Google Scholar 

  33. R. Song, D. Ponge, D. Raabe, R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing. Acta Mater. 53, 845–858 (2005)

    CAS  Article  Google Scholar 

  34. N.M.L. Granados, A.S. Rodriguez, EBSD investigation on effect of cooling rate on microstructure and transformation textures of high strength hot rolled steel plate. J. Iron. Steel Res. Int. 23(3), 261–269 (2016)

    Article  Google Scholar 

  35. C.G. Andres, F.G. Caballero, C. Capdevila, D.S. Martin, Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater. Charact. 49(2), 121–127 (2002)

    Article  CAS  Google Scholar 

  36. B.J. Park, J.M. Choi, K.J. Lee, Analysis of phase transformations during continuous cooling by the first derivative of dilatation in low carbon steels. Mater. Charact. 64, 8–14 (2012)

    CAS  Article  Google Scholar 

  37. M. Takahashi, H.K.D.H. Bhadeshia, The interpretation of dilatometric data for transformations in steels. J. Mater. Sci. Lett. 8, 477–478 (1989)

    CAS  Article  Google Scholar 

  38. M. Onink, F.D. Tichelaar, C.M. Brakman, E.J. Mittemeijer, S. van der Swaag, Quantitative analysis of the dilatation by decomposition of Fe-C Austenites; calculation of volume change upon transformation. Zeitschrift Fur Metallkunde. 87(1), 24–32 (1996)

    CAS  Google Scholar 

  39. T. A. Kop, Sietsma, J., Zwaag, S.: Proc. Materials Solutions ’97 on Accelerated Cooling/Direct Quenching Steels, ASM International, Materials Park, OH, 159, (1997)

  40. M. Avrami, Kinetics of phase change. I General Theory. J. Chem. Phys. 7(12), 1103–1112 (1939)

    CAS  Article  Google Scholar 

  41. M. Gómez, S.F. Medina, G. Caruana, Modelling of phase transformation kinetics by correction of dilatometry results for a ferritic nb-microalloyed steel. ISIJ Int. 43(8), 1228–1237 (2003)

    Article  Google Scholar 

  42. C.M. Sellars, The physical metallurgy of hot working, in Hot Working and Forming Processes. ed. by C.M. Sellars, G.J. Davies (The Metals Society, London, 1980), pp. 3–15

    Google Scholar 

  43. R.A. Cardosoa, G.L. Faria, Characterization of austenite decomposition in steels with different chemical concepts and high potential to manufacture seamed pipes for oil and gas industry. Mater. Res. (2019). https://doi.org/10.1590/1980-5373-mr-2019-0378

    Article  Google Scholar 

  44. A.L.S. Cezárioa, G. Lúcio, de Fariaa, Proposition of an Empirical Functional Equation to Predict the Kinetics of Austenite to Ferrite Transformation in a Continuous Cooled IF-Ti-Stabilized Steel. Mater. Res. (2021). https://doi.org/10.1590/1980-5373-mr-2020-0498

    Article  Google Scholar 

  45. Y.B. Guo, G.F. Sui, Y.C. Liu, Y. Chen, D.T. Zhang, Phase transformation mechanism of low carbon high strength low alloy steel upon continuous cooling. Mater. Res. Innov. 19(sup8), 416–422 (2015)

    Google Scholar 

  46. S.B. Singh, K. Krishnan, S.S. Sahay, Modeling non-isothermal austenite to ferrite transformation in low carbon steels. Mater. Sci. Eng., A. 445–446, 310–315 (2007)

    Article  CAS  Google Scholar 

  47. M. Umemoto, Z.H. Guo, I. Tamura, Effect of cooling rate on grain size of ferrite in a carbon steel. Mater. Sci. Technol. 3, 249–255 (1987)

    CAS  Article  Google Scholar 

  48. A.A. Gorni, P.R. Mei, Austenite transformation and age hardening of HSLA-80 and ULCB steels. J. Mater. Process. Technol. 155–156, 1513–1518 (2003)

    Google Scholar 

  49. J.J. Jonas, Transformation textures associated with steel processing, in Microstructure and texture in steel. ed. by A. Haldar, S. Suwas, D. Bhattacharjee (Springer, 2009), pp. 3–17

    Chapter  Google Scholar 

  50. R.K. Ray, J.J. Jonas, Transformation textures in steels. Int. Mater. Rev. 35, 1–36 (1990)

    Article  Google Scholar 

  51. V. Javaheri, N. Khodaieb, A. Kaijalainen, D. Porter, Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 040% C thermomechanically processed steel. Mater. Charact. 142, 295–308 (2018)

    CAS  Article  Google Scholar 

  52. M.C. Zhao, K. Yang, F.R. Xiao, Y.Y. Shan, Continuous cooling transformation of undeformed and deformed low carbon pipeline steels. Mater. Sci. Eng. A. 355, 126–136 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank HoD–R&D, JSW Steel Ltd. Dolvi Works for his permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishabh Bharadwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bharadwaj, R., Sarkar, A. & Rakshe, B. Effect of Cooling Rate on Phase Transformation Kinetics and Microstructure of Nb–Ti Microalloyed Low Carbon HSLA Steel. Metallogr. Microstruct. Anal. 11, 661–672 (2022). https://doi.org/10.1007/s13632-022-00864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00864-9

Keywords

  • Phase transformation
  • HSLA steel
  • Kinetics
  • Ferrite
  • Dilatometer