Skip to main content
Log in

Microstructure and Corrosion Properties of S400E Sorbite Stainless Steel

  • Peer-Reviewed Paper
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

S400E stainless steel is a new type of sorbite stainless steel that has been developed in China recently. S400E stainless steel exhibits good mechanical properties, corrosion resistance, and weldability due to the alloying elements. However, the corrosion and microstructure role has not been understood extensively. This paper investigates the electrochemical corrosion properties, microstructure, and phase diagram of the new S400E sorbite stainless steel. The corrosion potential and pitting potential of the S400E are higher than the 12Cr13, indicating better corrosion resistance. The microstructure by SEM and EPMA illustrated that chromium carbides are distributed homogenously in the S400E stainless steel but heterogenous in the 12Cr13 stainless steel. The calculated phase diagram shows that the increase in the P element content in the S400E stainless steel will expand the M3P and M (C, N) phase regions; furthermore, the calculated phase diagram shows that the S400E stainless steel temperature from 900–1000°C has ferrite and austenite region, whereas 12Cr13 have austenite phase at that temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Edqm Committee of Experts on Packaging Materials for Food and Pharmaceutical Products ω P-SC-EMB

  2. N.R. Baddoo, Stainless steel in construction: a review of research, applications, challenges and opportunities. J. Constr. Steel Res. 64, 1199–1206 (2008). https://doi.org/10.1016/j.jcsr.2008.07.011

    Article  Google Scholar 

  3. A.H. Committee, Properties and Selection: Irons, Steels, and High-Performance Alloys (ASM International, Ohio, 2018)

    Google Scholar 

  4. T. Manninen, J. Säynäjäkangas, Mechanical Properties of Ferritic Stainless Steels at Elevated Temperature

  5. Gunilla, Bioaccessibility of Stainless Steels
– Importance of Bulk and Surface Features (2008)

  6. M. Lundin, Y. Hedberg, T. Jiang et al., Adsorption and protein-induced metal release from chromium metal and stainless steel. J. Colloid Interface Sci. 366, 155–164 (2012). https://doi.org/10.1016/j.jcis.2011.09.068

    Article  CAS  Google Scholar 

  7. M.G. Shettlemore, K.J. Bundy, Examination of in vivo influences on bioluminescent microbial assessment of corrosion product toxicity. Biomaterials. 22, 2215–2228 (2001). https://doi.org/10.1016/S0142-9612(00)00410-5

    Article  CAS  Google Scholar 

  8. S. Karimi, T. Nickchi, A.M. Alfantazi, Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions. Appl. Surf. Sci. 258, 6087–6096 (2012). https://doi.org/10.1016/j.apsusc.2012.03.008

    Article  CAS  Google Scholar 

  9. J. Pan, C. Karlén, C. Ulfvin, Electrochemical study of resistance to localized corrosion of stainless steels for biomaterial applications. J. Electrochem. Soc. 147, 1021 (2000). https://doi.org/10.1149/1.1393307

    Article  CAS  Google Scholar 

  10. M. Accominotti, M. Bost, P. Haudrechy et al., Contribution to chromium and nickel enrichment during cooking of foods in stainless steel utensils. Contact Dermatitis. 38, 305–310 (1998). https://doi.org/10.1111/j.1600-0536.1998.tb05763.x

    Article  CAS  Google Scholar 

  11. A.N. Isfahany, H. Saghafian, G. Borhani, The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J. Alloys Compd. 509, 3931–3936 (2011). https://doi.org/10.1016/j.jallcom.2010.12.174

    Article  CAS  Google Scholar 

  12. S.K. Bhambri, Intergranular fracture in 13 wt% chromium martensitic stainless steel. J. Mater. Sci. 21, 1741–1746 (1986). https://doi.org/10.1007/BF01114734

    Article  CAS  Google Scholar 

  13. Phase transformations in metals and alloys by David a Porter, MD, PhD - Alibris. https://www.alibris.com/Phase-transformations-in-metals-and-alloys-David-a-Porter-MD-PhD/book/5096543. Accessed 16 Dec 2020

  14. S. Kumar, R.P. Kushwaha, B.C. Maji et al., Phase-dependent tensile properties of 9Cr-1Mo(V, Nb) ferritic/martensitic steel. Metall. Mater. Trans. A. 45, 531–536 (2014). https://doi.org/10.1007/s11661-013-2151-7

    Article  CAS  Google Scholar 

  15. S. Marcelin, N. Pébère, S. Régnier, Electrochimica acta electrochemical characterisation of a martensitic stainless steel in a neutral chloride solution. Electrochim. Acta. 87, 32–40 (2013). https://doi.org/10.1016/j.electacta.2012.09.011

    Article  CAS  Google Scholar 

  16. J.W. Oldfield, W.H. Sutton, Crevice corrosion of stainless steels: I. A mathematical model. Br. Corros. J. 13, 13–22 (1978). https://doi.org/10.1179/000705978798358671

    Article  CAS  Google Scholar 

  17. X.P. Ma, L.J. Wang, C.M. Liu, S. Subramanian, Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06N super martensitic stainless steel. Mater. Sci. Eng. A. 539, 271–279 (2012). https://doi.org/10.1016/j.msea.2012.01.093

    Article  CAS  Google Scholar 

  18. T. Jiang, J. Sun, H. Liu et al., A high performance martensitic stainless steel containing 1.5 wt% Si. Mater. Des. 125, 35–45 (2017). https://doi.org/10.1016/j.matdes.2017.03.078

    Article  CAS  Google Scholar 

  19. R.L. Klueh, K. Ehrlich, F. Abe, Ferritic/martensitic steels: promises and problems. J. Nucl. Mater. 191–194, 116–124 (1992). https://doi.org/10.1016/S0022-3115(09)80018-4

    Article  Google Scholar 

  20. S. Dong, P Wang, C. Dong, et al, Sorbite stainless steel (2018)

  21. C.A.D. Rodrigues, P.L.D. Lorenzo, A. Sokolowski et al., Development of a supermartensitic stainless steel microalloyed with niobium. J. ASTM Int. (2006). https://doi.org/10.1520/jai14086

    Article  Google Scholar 

  22. X. Ma, C. Zhang, C. Zhang et al., Microstructure and properties of sorbite stainless steel designed by “hybrid” idea. Cailiao Daobao Mater. Rep. 34, 04103–04107 (2020). https://doi.org/10.11896/cldb.18120004

    Article  Google Scholar 

  23. X.Y. Xue, X. Zhou, Y. Shi, Y. Xiang, Ultimate shear resistance of S600E high-strength stainless steel plate girders. J. Constr. Steel Res. 179, 106535 (2021). https://doi.org/10.1016/j.jcsr.2021.106535

    Article  Google Scholar 

  24. F. Zhou, Y. Chen, B. Young, Cold-formed high strength stainless steel cross-sections in compression considering interaction effects of constituent plate elements. J. Constr. Steel Res. 80, 32–41 (2013). https://doi.org/10.1016/j.jcsr.2012.09.004

    Article  Google Scholar 

  25. F. Zhou, L. Li, Experimental study on hysteretic behavior of structural stainless steels under cyclic loading. J. Constr. Steel Res. 122, 94–109 (2016). https://doi.org/10.1016/j.jcsr.2016.03.006

    Article  Google Scholar 

  26. F. Zhou, B. Young, Cold-formed high-strength stainless steel tubular sections subjected to web crippling. J. Struct. Eng. 133, 368–377 (2007). https://doi.org/10.1061/(ASCE)0733-9445(2007)133:3(368)

    Article  Google Scholar 

  27. I. Arrayago, E. Real, L. Gardner, Description of stress-strain curves for stainless steel alloys. Mater. Des. 87, 540–552 (2015). https://doi.org/10.1016/j.matdes.2015.08.001

    Article  CAS  Google Scholar 

  28. WO2018001097 Sorbite stainless steel. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018001097. Accessed 5 Oct 2020

  29. CN107557697A—A kind of sorbite stainless steel—Google Patents. https://patents.google.com/patent/CN107557697A/en. Accessed 5 Oct 2020

  30. C. Celada-Casero, B.M. Huang, J.R. Yang, D. San-Martin, Microstructural mechanisms controlling the mechanical behaviour of ultrafine grained martensite/austenite microstructures in a metastable stainless steel. Mater. Des. 181, 107922 (2019). https://doi.org/10.1016/j.matdes.2019.107922

    Article  CAS  Google Scholar 

  31. Y. Hou, J. Zhao, C.Q. Cheng et al., The metastable pitting corrosion of 2205 duplex stainless steel under bending deformation. J. Alloys Compd. 830, 154422 (2020). https://doi.org/10.1016/j.jallcom.2020.154422

    Article  CAS  Google Scholar 

  32. Y. Hou, C. Cheng, T. Cao et al., Electrochemical science effects of sensitization on the metastable pitting corrosion of 304 stainless steel. Int. J. Electrochem. Sci. 13, 7095–7110 (2018). https://doi.org/10.20964/2018.07.74

    Article  CAS  Google Scholar 

  33. L. Peguet, A. Gaugain, C. Dussart et al., Statistical study of the critical pitting temperature of 22–05 duplex stainless steel. Corros. Sci. 60, 280–283 (2012). https://doi.org/10.1016/J.CORSCI.2012.03.025

    Article  CAS  Google Scholar 

  34. Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds | Elsevier Enhanced Reader. https://reader.elsevier.com/reader/sd/pii/S0010938X13001686?token=5C499DDBFF3670CCDA3DAEBF60D0C9331158C8AFE50946729051D8F36C14B5EA677386C37C1F744C8154DFE688D370BE&originRegion=us-east-1&originCreation=20211219053149. Accessed 19 Dec 2021

  35. S.H. Lee, H.S. Na, K.W. Lee et al., Microstructural characteristics and m23c6 precipitate behavior of the course-grained heat-affected zone of T23 steel without post-weld heat treatment. Metals. (2018). https://doi.org/10.3390/met8030170

    Article  Google Scholar 

  36. N. Ohkubo, K. Miyakusu, Y. Uematsu, H. Kimura, Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel. ISIJ Int. 34, 764–772 (1994). https://doi.org/10.2355/isijinternational.34.764

    Article  CAS  Google Scholar 

  37. C.A.D. Rodrigues, R.M. Bandeira, B.B. Duarte et al., Effect of phosphorus content on the mechanical, microstructure and corrosion properties of supermartensitic stainless steel. Mater. Sci. Eng., A. 650, 75–83 (2016). https://doi.org/10.1016/j.msea.2015.10.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Cheng, CQ., Cao, TS. et al. Microstructure and Corrosion Properties of S400E Sorbite Stainless Steel. Metallogr. Microstruct. Anal. 11, 649–660 (2022). https://doi.org/10.1007/s13632-022-00863-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00863-w

Keywords

Navigation