M. Franceschi, L. Pezzato, C. Gennari, A. Fabrizi, M. Polyakova, D. Konstantinov, K. Brunelli, M. Dabalà, Effect of intercritical annealing and austempering on the microstructure and mechanical properties of a high silicon manganese steel. Metals. 10(11), 1448 (2020)
CAS
Article
Google Scholar
D. Mandal, M. Ghosh, J. Pal, P.K. De, S. Ghosh Chowdhury, S.K. Das, G. Das, S. Ghosh, Effect of austempering treatment on microstructure and mechanical properties of high-Si steel. J. Mater. Sci. 44, 1069–1075 (2009)
CAS
Article
Google Scholar
S.K. Putatunda, A.V. Singar, R. Tackett, G. Lawes, Development of a high strength high toughness ausferritic steel. Mater. Sci. Eng. A. 513–514, 329–339 (2009)
Article
Google Scholar
E. Vuorinen, X. Chen, In-situ high-temperature X-ray studies on the bainitic transformation of austempered silicon alloyed steels. Mater. Sci. Forum. 638–642, 3086–3092 (2010)
Article
Google Scholar
N. Fonstein, Advanced high strength sheet steels, in Physical Metallurgy, Design, Processing, and Properties. (Springer, Cham, Switzerland, 2015), pp. 1–396
Google Scholar
D.V. Edmonds, R.C. Cochrane, Structure-property relationships in bainitic steels. Metall. Trans. A. 21, 1527–1540 (1990)
Article
Google Scholar
L.-J. Zhu, W.U. Di, X.-M. Zhao, Effect of Silicon content on thermodynamics of austenite decomposition in C-Si-Mn TRIP steels. J. Iron Steel Res. Int. 13, 57–60 (2006)
CAS
Article
Google Scholar
L.J. Zhu, D. Wu, X.M. Zhao, Effect of silicon addition on recrystallization and phase transformation behavior of high-strength hot-rolled trip steel. Acta Metall. Sin. Engl. Lett. 21, 163–168 (2008)
CAS
Article
Google Scholar
O. Matsumura, Y. Sakuma, Retained austenite in O.4C-Si-1.2Mn steel sheet intercritically heated and austempered. ISIJ Int. 32, 4–10 (1992)
Google Scholar
X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr. Mater. 68, 321–324 (2013)
CAS
Article
Google Scholar
I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of microstructure on the stability of retained austenite in TRIP steels. Metall. Mater. Trans. A. 35, 2331–2340 (2004)
Article
Google Scholar
E.V. Pereloma, A.A. Gazder, I.B. Timokhina, Addressing retained austenite stability in advanced high strength steels. Mater. Sci. Forum. 738–739, 212–216 (2013)
Article
Google Scholar
R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. Van Der Zwaag, N.H. Van Dijk, High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater. 60, 565–577 (2012)
Article
Google Scholar
C. Garcia-Mateo, G. Paul, M.C. Somani, D.A. Porter, L. Bracke, A. Latz, C.G. de Andres, F.G. Caballero, Transferring nanoscale bainite concept to lower C contents. Metals. 7, 159 (2017)
Article
Google Scholar
G. Xu, F. Liu, L. Wang, H.J. Hu, A new approach to quantitative analysis of bainitic transformation in a super bainite steel. Scr. Mater. 68, 833 (2013)
CAS
Article
Google Scholar
M.X. Zhou, G. Xu, L. Wang, H.J. Hu, Effect of undercooling and austenitic grain size on bainitic transformation in an Fe–C–Mn–Si superbainite steel. Trans. Indian Inst. Met. 69, 693 (2016)
CAS
Article
Google Scholar
H.J. Hu, H. Zurob, G. Xu, D. Embury, G.R. Purdy, New insights to the effects of ausforming on the bainitic transformation. Mater. Sci. Eng. A. 626, 34 (2015)
CAS
Article
Google Scholar
J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, The effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels. Metals. 7(2), 40 (2017)
Article
Google Scholar
S. Baradari, M.A. Boutorabi, Effects of isothermal transformation conditions on the microstructure and hardness values of a high-carbon Al-Si alloyed steel. Mater. Des. 86, 603 (2015)
CAS
Article
Google Scholar
H. Suito, R. Inoue, Thermodynamics on control of inclusions composition in ultraclean steels. ISIJ Int. 36, 528–536 (2007). https://doi.org/10.2355/isijinternational.36.528
Article
Google Scholar
L. Jiang, K. Cui, Quantitative study of modification of sulphide inclusions by calcium and its effect on the impact toughness of a resulfurised alloy steel. Steel Res. 68, 163–168 (1997). https://doi.org/10.1002/srin.199700558
CAS
Article
Google Scholar
F. Sun, K. Geng, F. Yu et al., Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel. Acta Metall. Sin. 56, 693–703 (2019). https://doi.org/10.11900/0412.1961.2019.00337
CAS
Article
Google Scholar
H.H. Halfa, A. Seikh, M.S. Soliman, Effect of heat treatment on tensile properties and microstructure of Co-Free, Low Ni-10 Mo-1.2 Ti Maraging Steel. Materials. 15(6), 2136 (2022)
CAS
Article
Google Scholar
A.H. Seikh, H. Halfa, M.S. Soliman, Effect of molybdenum content on the corrosion and microstructure of low-ni co-free maraging steels. Metals. 11(6), 852 (2021)
CAS
Article
Google Scholar
A.H. Seikh, H. Halfa, M.S. Soliman, Evaluation of strength and microstructural properties of heat treated high-molybdenum content maraging steel. Crystals. 11(12), 1446 (2021)
CAS
Article
Google Scholar
F. Akhtar, Estimation of inclusion in forged steel through ultrasonic imaging technique. Int. J. Res. Appl. Sci. Eng. Technol. (2019). https://doi.org/10.22214/ijraset.2019.9150
Article
Google Scholar
Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int. J. Fatigue. 11, 291–298 (1989). https://doi.org/10.1016/0142-1123(89)90054-6
CAS
Article
Google Scholar
Y. Murakami, H. Usuki, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size. Int. J. Fatigue. 11, 299–307 (1989). https://doi.org/10.1016/0142-1123(89)90054-6
CAS
Article
Google Scholar
T.A. Khalifa, Effect of inclusions on the fatigue limit of a heat-treated carbon steel. Mater. Sci. Eng. A. 102(2), 175–180 (1988). https://doi.org/10.1016/0025-5416(88)90572-1
Article
Google Scholar
L.J. House, R. Rungta, A review of advances in noninvasive methods for detection and characterization of inclusions, in Proceedings of a Symposium Held in a Conjunction with the 1988 World Materials Congress on ''Inclusions and their Influence on Material Behavior. (Illinois, 1988) pp. 93–108
C. Gu, J. Lian, Y. Bao et al., Numerical study of the effect of inclusions on the residual stress distribution in high-strength martensitic steels during cooling. Appl. Sci. 9, 455 (2019). https://doi.org/10.3390/app9030455
CAS
Article
Google Scholar
A. Barbangelo, Influence of nonmetallic inclusions on fatigue crack growth in a structural steel. J. Mater. Sci. 20, 2087–2092 (1985). https://doi.org/10.1007/BF01112291
CAS
Article
Google Scholar
H. Halfa, Characterization of electroslag remelted super hard high speed tool steel containing niobium. Res. Int. 84, 495–510 (2013)
CAS
Google Scholar
B. Sundman, B. Jansson, J.O. Andersson, The thermo-calc databank system. Calphad. 9(2), 153–190 (1985)
CAS
Article
Google Scholar
B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solid. 42(4), 297–301 (1981)
CAS
Article
Google Scholar
G.C. Coelho, J.A. Golczewski, H.F. Fischmeister, Thermodynamic calculations for Nb-containing high-speed steels and white-cast iron alloy. Metall. Mater. Trans. A. 34A, 1749–1750 (2003)
CAS
Article
Google Scholar
C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, A new empirical formula for the calculation of MS in pure iron super-low alloy steels. J. Mater. Process. Technol. 113, 556–562 (2001)
CAS
Article
Google Scholar
S. Kang, S. Yoon, S.J. Lee, Prediction of bainite start temperature in alloy steels with different grain sizes. ISIJ Int. 54, 997–999 (2014)
CAS
Article
Google Scholar
J. Tian, G. Xu, M. Zhou, H. Hu, Refined bainite microstructure and mechanical properties of a high-strength low-carbon bainitic steel treated by austempering below and above MS. Steel Res. Int. 89, 1700469 (2018)
Article
Google Scholar
S. Gündüz, A. Çapar, Influence of forging and cooling rate on microstructure and properties of medium carbon micro-alloy forging steel. J. Mater. Sci. 41, 561–564 (2006)
Article
Google Scholar
A. Inam, R. Brydson, D.V. Edmonds, Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater. Charact. 106, 86–92 (2015)
CAS
Article
Google Scholar
A. Inam, R. Brydson, D.V. Edmonds, A high-resolution study of graphite nodule formation in experimental medium-carbon machining steel. Mater. Charact. 131, 508–516 (2017)
CAS
Article
Google Scholar
D. Edmonds, R. Brydson, A. Inam, High-resolution metallography of a coarse microstructure: graphite formation in the solid-state in steel. Mater. Perform. Charact. 5, 780–795 (2016)
CAS
Google Scholar
J.W. Liang, X. Wang, X.L. Zhang, Y.F. Shen, Development of low-alloy steels with high strength and good ductility with the aid of nanoscale troostite. Mater. Eng. Perform. 28, 1639–1649 (2019)
CAS
Article
Google Scholar
Y. Wang, R. Li, X. Zuo, N. Chen, Y. Rong, The twice softening of martensitic matrix in Q-P–Tsteels and its effect on ductility. Heat Treat. Surf. Eng. 1, 2–10 (2019)
Article
Google Scholar
J.Y. Meng, Y. Feng, Q. Zhou, L.J. Zhao, F.C. Zhang, L.H. Qian, Effects of austempering temperature on strength, ductility and toughness of low-C High-Al/Si carbide-free bainitic steel. J. Mater. Eng. Perform. 24, 3068–3076 (2015)
CAS
Article
Google Scholar
F.G. Caballero, H.K.D.H. Bhadeshia, Current opinion in solid state and material science. Mater. Sci. 8, 251 (2004)
CAS
Google Scholar
S.B. Singh, H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A. 245, 72 (1998)
Article
Google Scholar
P.J. Jacques, R.E.J. Ladrie, F. Delannay, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mater. Trans. 32A, 2759–2768 (2001)
CAS
Article
Google Scholar
J.M. Hampshire, E. King, J.J.C. Hoo, Effect of steel manufacturing process on the quality of bearing steels. ASTM STP987. (American Society for Testing and Materials, Philadelphia, USA, 1988) pp. 61–80
V. Efremenko, K. Shimizu, V. Zurnadgy et al., Mechanical properties of carbide-free lower bainite in complex alloyed constructional steel: effect of bainitizing treatment parameters. Kov. Mater. 58, 129–140 (2020). https://doi.org/10.4149/km_2020_2_129
CAS
Article
Google Scholar