Skip to main content

Microstructure and Mechanical Properties of Advanced High-Silicon Austempered Steel

Abstract

This paper has attempted to investigate microstructure evolution as a function of silicon content using Thermo-Calc software as a computational prediction technique. This research work aims to evaluate the mechanical properties of investigated steel and outline their relationship with the microstructure.Thermo-Calc was used for calculating phase volume fractions of a set of silicon-containing steel alloys. The mechanical properties of investigated steels such as tensile properties, hardness, and impact toughness) were evaluated from a microstructure point of view. The fracture surface of tensile samples was studied utilizing a scanning electron microscope equipped with energy-dispersive x-ray (point micro-analysis). The experimental results revealed that microstructure evaluations were close to the predicted computational by Thermo-Calc software. Also, the results showed that the microstructure of the high silicon steel (≥ 1.5 wt.%) is more dense, well homogenous and contains a volume fraction of 93% Bcc-ferrite at approximately, and 1.5% Fcc-austenite, as well as 5.5% different types of carbides. Also, The experimental results showed that the mechanical properties of the steel containing silicon (1.59 wt.%) have a remarkable enhancement of toughness in combination with high hardness and tensile strength compared to low silicon steel. The yield strength (1088 MPa) and elongation (16.4%) were obtained for austempered steel containing 1.59 wt.% silicon. The fracture surface mode of the investigated steel transition from brittle to ductile fracture according to the silicon content related to obtained microstructure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. M. Franceschi, L. Pezzato, C. Gennari, A. Fabrizi, M. Polyakova, D. Konstantinov, K. Brunelli, M. Dabalà, Effect of intercritical annealing and austempering on the microstructure and mechanical properties of a high silicon manganese steel. Metals. 10(11), 1448 (2020)

    CAS  Article  Google Scholar 

  2. D. Mandal, M. Ghosh, J. Pal, P.K. De, S. Ghosh Chowdhury, S.K. Das, G. Das, S. Ghosh, Effect of austempering treatment on microstructure and mechanical properties of high-Si steel. J. Mater. Sci. 44, 1069–1075 (2009)

    CAS  Article  Google Scholar 

  3. S.K. Putatunda, A.V. Singar, R. Tackett, G. Lawes, Development of a high strength high toughness ausferritic steel. Mater. Sci. Eng. A. 513–514, 329–339 (2009)

    Article  Google Scholar 

  4. E. Vuorinen, X. Chen, In-situ high-temperature X-ray studies on the bainitic transformation of austempered silicon alloyed steels. Mater. Sci. Forum. 638–642, 3086–3092 (2010)

    Article  Google Scholar 

  5. N. Fonstein, Advanced high strength sheet steels, in Physical Metallurgy, Design, Processing, and Properties. (Springer, Cham, Switzerland, 2015), pp. 1–396

    Google Scholar 

  6. D.V. Edmonds, R.C. Cochrane, Structure-property relationships in bainitic steels. Metall. Trans. A. 21, 1527–1540 (1990)

    Article  Google Scholar 

  7. L.-J. Zhu, W.U. Di, X.-M. Zhao, Effect of Silicon content on thermodynamics of austenite decomposition in C-Si-Mn TRIP steels. J. Iron Steel Res. Int. 13, 57–60 (2006)

    CAS  Article  Google Scholar 

  8. L.J. Zhu, D. Wu, X.M. Zhao, Effect of silicon addition on recrystallization and phase transformation behavior of high-strength hot-rolled trip steel. Acta Metall. Sin. Engl. Lett. 21, 163–168 (2008)

    CAS  Article  Google Scholar 

  9. O. Matsumura, Y. Sakuma, Retained austenite in O.4C-Si-1.2Mn steel sheet intercritically heated and austempered. ISIJ Int. 32, 4–10 (1992)

    Google Scholar 

  10. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, L. Wang, The effect of morphology on the stability of retained austenite in a quenched and partitioned steel. Scr. Mater. 68, 321–324 (2013)

    CAS  Article  Google Scholar 

  11. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Effect of microstructure on the stability of retained austenite in TRIP steels. Metall. Mater. Trans. A. 35, 2331–2340 (2004)

    Article  Google Scholar 

  12. E.V. Pereloma, A.A. Gazder, I.B. Timokhina, Addressing retained austenite stability in advanced high strength steels. Mater. Sci. Forum. 738–739, 212–216 (2013)

    Article  Google Scholar 

  13. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. Van Der Zwaag, N.H. Van Dijk, High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels. Acta Mater. 60, 565–577 (2012)

    Article  Google Scholar 

  14. C. Garcia-Mateo, G. Paul, M.C. Somani, D.A. Porter, L. Bracke, A. Latz, C.G. de Andres, F.G. Caballero, Transferring nanoscale bainite concept to lower C contents. Metals. 7, 159 (2017)

    Article  Google Scholar 

  15. G. Xu, F. Liu, L. Wang, H.J. Hu, A new approach to quantitative analysis of bainitic transformation in a super bainite steel. Scr. Mater. 68, 833 (2013)

    CAS  Article  Google Scholar 

  16. M.X. Zhou, G. Xu, L. Wang, H.J. Hu, Effect of undercooling and austenitic grain size on bainitic transformation in an Fe–C–Mn–Si superbainite steel. Trans. Indian Inst. Met. 69, 693 (2016)

    CAS  Article  Google Scholar 

  17. H.J. Hu, H. Zurob, G. Xu, D. Embury, G.R. Purdy, New insights to the effects of ausforming on the bainitic transformation. Mater. Sci. Eng. A. 626, 34 (2015)

    CAS  Article  Google Scholar 

  18. J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, The effects of Cr and Al addition on transformation and properties in low-carbon bainitic steels. Metals. 7(2), 40 (2017)

    Article  Google Scholar 

  19. S. Baradari, M.A. Boutorabi, Effects of isothermal transformation conditions on the microstructure and hardness values of a high-carbon Al-Si alloyed steel. Mater. Des. 86, 603 (2015)

    CAS  Article  Google Scholar 

  20. H. Suito, R. Inoue, Thermodynamics on control of inclusions composition in ultraclean steels. ISIJ Int. 36, 528–536 (2007). https://doi.org/10.2355/isijinternational.36.528

    Article  Google Scholar 

  21. L. Jiang, K. Cui, Quantitative study of modification of sulphide inclusions by calcium and its effect on the impact toughness of a resulfurised alloy steel. Steel Res. 68, 163–168 (1997). https://doi.org/10.1002/srin.199700558

    CAS  Article  Google Scholar 

  22. F. Sun, K. Geng, F. Yu et al., Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel. Acta Metall. Sin. 56, 693–703 (2019). https://doi.org/10.11900/0412.1961.2019.00337

    CAS  Article  Google Scholar 

  23. H.H. Halfa, A. Seikh, M.S. Soliman, Effect of heat treatment on tensile properties and microstructure of Co-Free, Low Ni-10 Mo-1.2 Ti Maraging Steel. Materials. 15(6), 2136 (2022)

    CAS  Article  Google Scholar 

  24. A.H. Seikh, H. Halfa, M.S. Soliman, Effect of molybdenum content on the corrosion and microstructure of low-ni co-free maraging steels. Metals. 11(6), 852 (2021)

    CAS  Article  Google Scholar 

  25. A.H. Seikh, H. Halfa, M.S. Soliman, Evaluation of strength and microstructural properties of heat treated high-molybdenum content maraging steel. Crystals. 11(12), 1446 (2021)

    CAS  Article  Google Scholar 

  26. F. Akhtar, Estimation of inclusion in forged steel through ultrasonic imaging technique. Int. J. Res. Appl. Sci. Eng. Technol. (2019). https://doi.org/10.22214/ijraset.2019.9150

    Article  Google Scholar 

  27. Y. Murakami, S. Kodama, S. Konuma, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. Int. J. Fatigue. 11, 291–298 (1989). https://doi.org/10.1016/0142-1123(89)90054-6

    CAS  Article  Google Scholar 

  28. Y. Murakami, H. Usuki, Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. II: Fatigue limit evaluation based on statistics for extreme values of inclusion size. Int. J. Fatigue. 11, 299–307 (1989). https://doi.org/10.1016/0142-1123(89)90054-6

    CAS  Article  Google Scholar 

  29. T.A. Khalifa, Effect of inclusions on the fatigue limit of a heat-treated carbon steel. Mater. Sci. Eng. A. 102(2), 175–180 (1988). https://doi.org/10.1016/0025-5416(88)90572-1

    Article  Google Scholar 

  30. L.J. House, R. Rungta, A review of advances in noninvasive methods for detection and characterization of inclusions, in Proceedings of a Symposium Held in a Conjunction with the 1988 World Materials Congress on ''Inclusions and their Influence on Material Behavior. (Illinois, 1988) pp. 93–108

  31. C. Gu, J. Lian, Y. Bao et al., Numerical study of the effect of inclusions on the residual stress distribution in high-strength martensitic steels during cooling. Appl. Sci. 9, 455 (2019). https://doi.org/10.3390/app9030455

    CAS  Article  Google Scholar 

  32. A. Barbangelo, Influence of nonmetallic inclusions on fatigue crack growth in a structural steel. J. Mater. Sci. 20, 2087–2092 (1985). https://doi.org/10.1007/BF01112291

    CAS  Article  Google Scholar 

  33. H. Halfa, Characterization of electroslag remelted super hard high speed tool steel containing niobium. Res. Int. 84, 495–510 (2013)

    CAS  Google Scholar 

  34. B. Sundman, B. Jansson, J.O. Andersson, The thermo-calc databank system. Calphad. 9(2), 153–190 (1985)

    CAS  Article  Google Scholar 

  35. B. Sundman, J. Ågren, A regular solution model for phases with several components and sublattices, suitable for computer applications. J. Phys. Chem. Solid. 42(4), 297–301 (1981)

    CAS  Article  Google Scholar 

  36. G.C. Coelho, J.A. Golczewski, H.F. Fischmeister, Thermodynamic calculations for Nb-containing high-speed steels and white-cast iron alloy. Metall. Mater. Trans. A. 34A, 1749–1750 (2003)

    CAS  Article  Google Scholar 

  37. C. Liu, Z. Zhao, D.O. Northwood, Y. Liu, A new empirical formula for the calculation of MS in pure iron super-low alloy steels. J. Mater. Process. Technol. 113, 556–562 (2001)

    CAS  Article  Google Scholar 

  38. S. Kang, S. Yoon, S.J. Lee, Prediction of bainite start temperature in alloy steels with different grain sizes. ISIJ Int. 54, 997–999 (2014)

    CAS  Article  Google Scholar 

  39. J. Tian, G. Xu, M. Zhou, H. Hu, Refined bainite microstructure and mechanical properties of a high-strength low-carbon bainitic steel treated by austempering below and above MS. Steel Res. Int. 89, 1700469 (2018)

    Article  Google Scholar 

  40. S. Gündüz, A. Çapar, Influence of forging and cooling rate on microstructure and properties of medium carbon micro-alloy forging steel. J. Mater. Sci. 41, 561–564 (2006)

    Article  Google Scholar 

  41. A. Inam, R. Brydson, D.V. Edmonds, Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel. Mater. Charact. 106, 86–92 (2015)

    CAS  Article  Google Scholar 

  42. A. Inam, R. Brydson, D.V. Edmonds, A high-resolution study of graphite nodule formation in experimental medium-carbon machining steel. Mater. Charact. 131, 508–516 (2017)

    CAS  Article  Google Scholar 

  43. D. Edmonds, R. Brydson, A. Inam, High-resolution metallography of a coarse microstructure: graphite formation in the solid-state in steel. Mater. Perform. Charact. 5, 780–795 (2016)

    CAS  Google Scholar 

  44. J.W. Liang, X. Wang, X.L. Zhang, Y.F. Shen, Development of low-alloy steels with high strength and good ductility with the aid of nanoscale troostite. Mater. Eng. Perform. 28, 1639–1649 (2019)

    CAS  Article  Google Scholar 

  45. Y. Wang, R. Li, X. Zuo, N. Chen, Y. Rong, The twice softening of martensitic matrix in Q-P–Tsteels and its effect on ductility. Heat Treat. Surf. Eng. 1, 2–10 (2019)

    Article  Google Scholar 

  46. J.Y. Meng, Y. Feng, Q. Zhou, L.J. Zhao, F.C. Zhang, L.H. Qian, Effects of austempering temperature on strength, ductility and toughness of low-C High-Al/Si carbide-free bainitic steel. J. Mater. Eng. Perform. 24, 3068–3076 (2015)

    CAS  Article  Google Scholar 

  47. F.G. Caballero, H.K.D.H. Bhadeshia, Current opinion in solid state and material science. Mater. Sci. 8, 251 (2004)

    CAS  Google Scholar 

  48. S.B. Singh, H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A. 245, 72 (1998)

    Article  Google Scholar 

  49. P.J. Jacques, R.E.J. Ladrie, F. Delannay, On the influence of interactions between phases on the mechanical stability of retained austenite in transformation-induced plasticity multiphase steels. Metall. Mater. Trans. 32A, 2759–2768 (2001)

    CAS  Article  Google Scholar 

  50. J.M. Hampshire, E. King, J.J.C. Hoo, Effect of steel manufacturing process on the quality of bearing steels. ASTM STP987. (American Society for Testing and Materials, Philadelphia, USA, 1988) pp. 61–80

  51. V. Efremenko, K. Shimizu, V. Zurnadgy et al., Mechanical properties of carbide-free lower bainite in complex alloyed constructional steel: effect of bainitizing treatment parameters. Kov. Mater. 58, 129–140 (2020). https://doi.org/10.4149/km_2020_2_129

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the management of the Central Metallurgical Research and Development Institute CMRDI Helwan-Cairo-Egypt, to support the production of research materials for this investigation. The authors are grateful to all of the Steel Technology and Ferroalloys Department colleagues at CMRDI for their great help and guidance to carry out all experimental procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer Eid Amer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amer, A.E., Halfa, H. & Ibrahim, K.M. Microstructure and Mechanical Properties of Advanced High-Silicon Austempered Steel. Metallogr. Microstruct. Anal. 11, 454–466 (2022). https://doi.org/10.1007/s13632-022-00857-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00857-8

Keywords

  • Austempered
  • Silicon, microstructure evolution
  • High strength steel
  • Thermo-Calc