Skip to main content
Log in

An Innovative Process for Synthesizing Mg–Al Alloy-Based Composites

  • Peer Reviewed
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Mg alloys were prone to catching fire as it comes in contact with oxygen in the air. This drawback of magnesium restricted the dispersing ceramic particles in magnesium melt for synthesizing composites by the stir casting process. To alleviate this problem, magnesium was melted either in a protective atmosphere or covered the melt surface with cover flux. Considering the above limitations, Al-based composites were prepared initially in a separate stir caster and were solidified in a metallic mold. Al composites were used as raw material and added into the protective atmosphere magnesium melting furnace along with magnesium metal and other alloying elements and produced Alloy 1 and 2. Alloy 1 contained 7.4% Al and alloy 2 contained 4% Al-0.46% Si-0.82% SiC. The scanning electron microscopic (SEM) observation confirmed the formation of divorce eutectic, massive and lamellar β-eutectic. SEM study of Mg composite (alloy 2) showed β-Mg17Al12, Mg2Si, MgO, and Mg–Al–Zn phases. The mechanical properties of the Alloy1 and 2 showed higher compressive strength as compared to commercial pure Mg, and the enhanced compressive strength of the alloys was found mainly due to the formation of β-eutectic and strain-hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. S. Chowdary, R. Dumpala, V.V. Kondaiah, Influence of heat treatment on the machinability and corrosion behavior of AZ91 Mg alloy. J. Magnes. Alloy. 6(1), 52–58 (2018)

    Article  Google Scholar 

  2. B. Akyüz, Wear and machinability of AM series magnesium alloys. Mater. Test. 61(1), 49–55 (2019)

    Article  Google Scholar 

  3. E. Fathi, H. Mirzadeh, M. Emamy, Grain refinement and enhanced mechanical properties of ZK20 magnesium alloy via hot extrusion and mischmetal addition. Mater. Res. Express. 6(11), 116522 (2019)

    Article  CAS  Google Scholar 

  4. J.D. Robson, C. Paa-Rai, The interaction of grain refinement and ageing in magnesium–zinc–zirconium (ZK) alloys. Acta Mater. 95, 10–19 (2015)

    Article  CAS  Google Scholar 

  5. S.L. Xiang, M. Gupta, X.J. Wang, L.D. Wang, X.S. Hu, K. Wu, Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets. Compos. A Appl. Sci. Manuf. 100, 183–193 (2017)

    Article  CAS  Google Scholar 

  6. L.J. Huang, L. Geng, H.X. Peng, Microstructurally inhomogeneous composites: is a homogeneous reinforcement distribution optimal. Prog. Mater. Sci. 71, 93–168 (2015)

    Article  CAS  Google Scholar 

  7. Q.C. Jiang, X.L. Li, H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites. Scr. Mater. 48(6), 713–717 (2003)

    Article  CAS  Google Scholar 

  8. P. Poddar, V.C. Srivastava, P.K. De, K.L. Sahoo, Processing and mechanical properties of SiC reinforced cast magnesium matrix composites by stir casting process. Mater. Sci. Eng. A. 460, 357–364 (2007)

    Article  Google Scholar 

  9. C.Y.H. Lim, S.C. Lim, M. Gupta, Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear. 255(1–6), 629–637 (2003)

    Article  CAS  Google Scholar 

  10. M. Zhang, M. Shen, J. Jia, Processing and mechanical properties of Mg-2.8 Al-0.8 Zn alloy containing bimodal size distribution. J. Mater. Res. Technol. 9(2), 2495–2505 (2020)

    Article  CAS  Google Scholar 

  11. S. Wu, S. Wang, D. Wen, G. Wang, Y. Wang, Microstructure and mechanical properties of magnesium matrix composites interpenetrated by different reinforcement. Appl. Sci. 8(11), 2012 (2018)

    Article  CAS  Google Scholar 

  12. A. Asgari, M. Sedighi, P. Krajnik, Magnesium alloy-silicon carbide composite fabrication using chips waste. J. Clean. Prod. 232, 1187–1194 (2019)

    Article  CAS  Google Scholar 

  13. S.Zhu, M. Gibson, M. Easton, Z. Zhen, T. Abbott, Creep resistant magnesium alloys and their properties. Metal Cast. Technol. csiro. au/rpr/download 21–25 (2012)

  14. R.B.Figueiredo, M.T.P. Aguilar, P.R. Cetlin, T.G. Langdon, Processing magnesium alloys by severe plastic deformation. In IOP Conference Series: Materials Science and Engineering, vol. 63. (2014), p. 012171

  15. A. Ramanathan, P.K. Krishnan, R. Muraliraja, A review on the production of metal matrix composites through stir casting–furnace design, properties, challenges, and research opportunities. J. Manuf. Process. 42, 213–245 (2019)

    Article  Google Scholar 

  16. Y. Cai, M.J. Tan, G.J. Shen, H.Q. Su, Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite. Mater. Sci. Eng. A. 282(1–2), 232–239 (2000)

    Article  Google Scholar 

  17. A.A. Luo, Magnesium casting technology for structural applications. J. Magnes. Alloy. 1(1), 2–22 (2013)

    Article  CAS  Google Scholar 

  18. M. Gui, P. Li, J. Han, Fabrication and characterization of cast magnesium matrix composites by vacuum stir casting process. Mater. Eng. Perform. 12(2), 128–134 (2003)

    Article  CAS  Google Scholar 

  19. A. Kumar, S. Kumar, N.K. Mukhopadhyay, Introduction to magnesium alloy processing technology and development of low-cost stir casting process for magnesium alloy and its composites. J. Magnes. Alloy. 6(3), 245–254 (2018)

    Article  CAS  Google Scholar 

  20. R.A. Saravanan, M.K. Surappa, Fabrication and characterization of pure magnesium-30 vol.% SiCP particle composite. Mater. Sci. Eng. A. 276(1–2), 108–116 (2000)

    Article  Google Scholar 

  21. C.H. Caceres, C.T. Davidson, J.R. Griffiths, C.L. Newton, Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy. Mater. Sci. Eng. A325, 344–355 (2002)

    Article  CAS  Google Scholar 

  22. R. Sarvesha, J. Bhagyaraj, S. Bhagavath, S. Karagadde, J. Jain, S.S. Singh, 2D and 3D characteristics of intermetallic particles and their role in fracture response of AZ91 magnesium alloy. Mater. Charact. 171, 110733 (2021)

    Article  CAS  Google Scholar 

  23. R. Sarvesha, G. Thirunavukkarasu, Y.L. Chiu, I.P. Jones, J. Jain, S.S. Singh, A study on the phase transformation of γ2-Al8Mn5 to LT-Al11Mn4 during solutionizing in AZ91 alloy. J. Alloys Compd. 873, 159836 (2021)

    Article  CAS  Google Scholar 

  24. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Revised Reprint) (CRC Press, 2009)

    Book  Google Scholar 

  25. M.D. Nave, A.K. Dahle, D.H. StJohn, Eutectic growth morphologies in magnesium-aluminium alloys. Magnes. Technol. 2000, 233–242 (2000)

    Google Scholar 

  26. Y. Zhang, Y. Liu, Y. Han, C. Wei, Z. Gao, The role of cooling rate in the microstructure of Al–Fe–Si alloy with high Fe and Si contents. J. Alloy. Compd. 473(1–2), 442–445 (2009)

    Article  CAS  Google Scholar 

  27. A. Srinivasan, U.T.S. Pillai, B.C. Pai, Microstructure and mechanical properties of Si and Sb added AZ91 magnesium alloy. Metall. Mater. Trans. A. 36(8), 2235–2243 (2005)

    Article  Google Scholar 

  28. H.P. Cao, M. Wessén, Effect of microstructure on mechanical properties of as-cast Mg-Al alloys. Metall. Mater. Trans. A. 35(1), 309–319 (2004)

    Article  Google Scholar 

  29. E. Orowan, Symposium on Internal Stresses (Institute of Metals, London, 1947). pp. 164, 451

  30. M. Yamamoto, Y. Nishimura, M. Hayashida, Influence of Al particles as infiltration promoters on the interfacial reaction and mechanical property of a continuous SiC fiber/AZ91 composite fabricated by a low-pressure infiltration method. J. Alloy. Compd. 887, 161461 (2021)

    Article  CAS  Google Scholar 

  31. S.J. Shang, P.H. Deng, G.Y. Cai, Y. Tian, Effect of hot extrusion refinement of Mg17Al12 on microstructure and mechanical properties of SiCp/AZ91 compositesTrans. Mater. Heat Treat. 38, 8–13 (2017)

    CAS  Google Scholar 

Download references

Acknowledgement

One of the authors Dr. Jayashree Baral, Assistant Professor MME, MANIT Bhopal, wishes to acknowledge gratefully the support of Director MANIT Bhopal for sanctioning the project on Mg alloy under seed money grant. Authors thanks all the faculty members for extending laboratory facilities to carry out the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayashree Baral.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, J., Das, S. & Sarvesha, R. An Innovative Process for Synthesizing Mg–Al Alloy-Based Composites. Metallogr. Microstruct. Anal. 11, 245–254 (2022). https://doi.org/10.1007/s13632-022-00853-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00853-y

Keywords

Navigation