Skip to main content

Archaeometallurgical Analysis of Thirteenth-Century Bronze and Iron Construction Implements from the Walls of the Frankish Castle at Arsuf/Arsur

Abstract

A discovery of the use of small metal plates was recently made at the Frankish sites of ‘Atlit, Arsur and Acre. These plates were used in the masonry, and we suggest for the first time their identification as construction implements that we term “spacers”. At Arsur, due to the homogenous use of relatively small ashlars to maintain level courses of finely built masonry walls, the spacers were found integrated into both interior and exterior walls. These spacers, dated to the second quarter of the thirteenth century, were subjected to metallurgical characterization. Some were made of copper-alloy, probably cast on site and having undergone surface finishing; while the others were corroded ferrous spacers, revealing a heterogeneous microstructure and too were probably produced on site. The present findings contribute to a better understanding of the construction method of stone masonry at Arsur Castle, enabling a deeper insight into a particular building technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. E. Viollet-le-Duc, Dictionnaire Raisonné de L’architecture Française du XIe au XVIe Siècle (Banc, Paris, 1868)

    Google Scholar 

  2. J. Ruskin, The Seven Lamps of Architecture (John B. Alden Publisher, London, 1849)

    Book  Google Scholar 

  3. J. Riley-Smith, Revised Regesta Regni Hierosolymitani Database. 848 (2016). http://crusades-regesta.com

  4. A. De Marsy, Fragment d’un cartulaire de l’Ordre de Saint Lazare, en Terre-Sainte. Arch l’Orient Latin. 2(25), 142–143 (1884)

    Google Scholar 

  5. R. Röhricht (ed.), Regesta Regni Hierosolymitani 1097-1291. (Oeniponti Libraria Academia Wagnerias, Paris, 1893)

    Google Scholar 

  6. J. Delaville Le Roulx, Cartulaire Général de L’ordre des Hospitaliers de St Jean de Jérusalem 1100–1310 (Ernest Leroux Publisher, Paris, 1894)

    Google Scholar 

  7. H. De Curzon, La Règle du Temple: Publiée pour la Société de l’histoire de France (Librairie Renouard, Paris, 1886)

    Google Scholar 

  8. J.M. Upton-Ward, The Rule of the Templars (The Boydell Press, Woodbridge, 1992)

    Google Scholar 

  9. R.M. Della Rocca, A. Lombardo, Documenti del Commercio Veneziano Nei Secoli XI-XIII: Nei Secoli XI-XIII (Libraria italiana, Venice, 1940)

    Google Scholar 

  10. D. Jacoby, Mediterranean food and wine for Constantinople: The long-distance trade, eleventh to mid-fifteenth century, in Handelsgüter und Verkehrswege. Aspekte der Warenversorgung im östlichen Mittelmeerraum (4. bis 15. Jahrhundert) (Österreichische Akademie der Wissenschaften, Philosophisch-historische Klasse, Denkschriften, 388. Band). ed. By E. Kislinger, J. Koder, A Külzer Vienna (repr. 2018 in Medieval Trade in the Eastern Mediterranean and Beyond, article 8 note 50, London), pp. 127–147.

  11. C.E. Fayle, A Short History of the World’s Shipping Industry (Routledge, Oxfordshire, 2013)

    Book  Google Scholar 

  12. E. Galili, S. Bauvais, B. Rosen, P. Dillmann, Cargoes of iron semi-products from shipwrecks off the Carmel Coast, Israel. Archaeometry. 57(3), 505–535 (2015)

    Article  CAS  Google Scholar 

  13. V. Shotten-Hallel, H. Yohanan, O. Tal, Et domus sua cuique est tutissimum refugium. Jean II of Ibelin, Arsur Castle and the Hospitallers, in Exploring outremer, Volume I: studies in medieval history in honour of Adrian J. Boas. Crusades subsidia: crusading and archaeology. ed. by R.G. Khamisy, R. Lewis, V. Shotten-Hallel (Routledge, London, 2022)

    Google Scholar 

  14. H. Kennedy, Crusader Castles (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  15. L.F. Salzman, Building in England Down to 1540 (Clarendon Press, Oxford, 1952)

    Google Scholar 

  16. G. Merriam, C. Merriam, Merriam-Webster.com Dictionary (Merriam-Webster. Springfield, Massachusetts, Founded in 1831). https://www.merriam-webster.com/dictionary/spacer. Accessed from 21 Aug 2021

  17. Z. Greenhut, Underground reservoirs from the Crusader period and later remains next to and north of the Synagogue at Moẓa. Atiqot 58, 135–144 (Hebrew), 73*–75* (English) (2008). https://www.jstor.org/stable/23464341

  18. O. Kogyigit, A terracotta spacer pin: evidence for a Roman baths at Amorium. Anatol. Stud. 60, 147–148 (2010)

    Article  Google Scholar 

  19. G. Agricola, H.C. Hoover, L.H. Hoover (first translated to English in 1912 from the Latin edition of 1556). De Re Metallica (Dover Publication, NY, 1950)

  20. A. Garbacz-Klempka, Z. Kwak, M. Perek-Nowak, M. Starski, The metallographic characterization of metal artifacts based on late medieval examples. Arch. Foundry Eng. 15, 29–34 (2015)

    CAS  Google Scholar 

  21. F. Ertl, S. Strobl, R. Haubner, An ancient bronze ingot smelted from fahlore. Mater. Sci. Forum. 891, 613–617 (2017)

    Article  Google Scholar 

  22. A. Hauptmann, R. Maddin, M. Prange, On the structure and composition of copper and tin ingots excavated from the shipwreck of Uluburun. Bull. Am. Sch. Orient. Res. 328(1), 1–30 (2002)

    Article  Google Scholar 

  23. R.F. Tylecote, Durable materials for sea water: the archaeological evidence. Intern. J. Naut. Archaeol. 6(4), 269–283 (1977)

    Article  Google Scholar 

  24. D. Ashkenazi, N. Iddan, O. Tal, Archaeometallurgical characterization of Hellenistic metal objects: the contribution of the bronze objects from Rishon Le-Zion (Israel). Archaeometry. 54(3), 528–548 (2012)

    Article  CAS  Google Scholar 

  25. D. Ashkenazi, S. Bunimovitz, A. Stern, Archaeometallurgical investigation of thirteenth–twelfth centuries BCE bronze objects from Tel Beth-Shemesh, Israel. J. Archaeol. Sci. Rep. 6, 170–181 (2016)

    Google Scholar 

  26. O. Papadopoulou, P. Vassiliou, The Influence of archaeometallurgical copper alloy castings microstructure towards corrosion evolution in various corrosive media. Corros. Mater. Degrad. 2(2), 227–247 (2021)

    Article  Google Scholar 

  27. A. Vazdirvanidis, G. Pantazopoulos, Metallographic study of great Anthony historical bronze bells of Apostle Andrew Skete in Mount Athos, Greece. Metall. Microstruct. Anal. 6(4), 340–351 (2017)

    Article  CAS  Google Scholar 

  28. T.S. Larson, Experiments Concerning the Mold Materials Used in the Production of the Copper Ingots from the Late Bronze Age Shipwreck Excavated at Uluburun, Turkey (Doctoral dissertation Texas A & M University, College Station, Texas, 2010)

    Google Scholar 

  29. D.A. Scott, Metallography and Microstructure in Ancient and Historic Metals (Getty Publications, Los Angeles, 1992)

    Google Scholar 

  30. D. Ashkenazi, How can fracture mechanics and failure analysis assist in solving mysteries of ancient metal artifacts? Archaeol. Anthropol. Sci. 12(1), 1–18 (2020)

    Article  Google Scholar 

  31. A. Charalambous, V. Kassianidou, G. Papasavvas, A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). J. Archaeol. Sci. 46, 205–216 (2014)

    Article  CAS  Google Scholar 

  32. D. Dungworth, Roman copper alloys: analysis of artefacts from northern Britain. J. Archaeol. Sci. 24(10), 901–910 (1997)

    Article  Google Scholar 

  33. V.K. Gouda, G.I. Youssef, N.A. Abdel Ghany, Characterization of Egyptian bronze archaeological artifacts. Surf. Interface Anal. 44, 1338–1345 (2012)

    Article  CAS  Google Scholar 

  34. C. Chiavari, M. Degli Esposti, G.L. Garagnani, C. Martini, F. Ospitali, Ancient metallurgy at Sumhuram (Sultanate of Oman): technical aspects of raised inscriptions on south Arabian bronzes. Archaeometry. 53(3), 528–546 (2011)

    Article  CAS  Google Scholar 

  35. O. Oudbashi, P. Davami, Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran. Mater. Charact. 97, 74–82 (2014)

    Article  CAS  Google Scholar 

  36. E. Hajjari, O. Oudbashi, E. Hemati Azandaryani, Technical studies on the mechanisms of corrosion and state of conservation of two hoards of Persian copper coins (folus) from the Safavid period in Iran. J. Inst. Conserv. 44(2), 86–98 (2021)

    Article  Google Scholar 

  37. K.N. Strafford, R. Newell, K. Audy, J. Audy, Analysis of bell material from the Middle Ages to the recent time. Endeavour. 20(1), 22–27 (1996)

    Article  CAS  Google Scholar 

  38. L. Haichao, L. Siran, C. Jianli, C. Jianfeng, L. Xingshan, C. Jianrong, G. Yuewen, L. Xingrui, H. Yuxuan, Cold-worked and annealed bronze objects and relevant motif techniques in the Chinese Bronze Age: analysis of bronze sheets found at Songjia cemetery in Shaanxi, China. Archaeometry. 62(1), 54–67 (2020)

    Article  CAS  Google Scholar 

  39. A. Inberg, D. Ashkenazi, M. Cohen, N. Iddan, D. Cvikel, Corrosion products and microstructure of copper alloy coins from the Byzantine-period Ma‘agan Mikhael B shipwreck, Israel. Microchem. J. 143, 400–409 (2018)

    Article  CAS  Google Scholar 

  40. G. Balassone, C. Petti, N. Mondillo, T.L. Panikorovskii, R. de Gennaro, P. Cappelletti, A. Altomare, N. Corriero, M. Cangiano, L. D’Orazio, Copper minerals at Vesuvius volcano (Southern Italy): a mineralogical review. Minerals. 9(12), 730 (2019)

    Article  CAS  Google Scholar 

  41. A.C. Saint, V. Dritsa, M. Koui, Development of an optimized NDT methodology for the investigation of ancient Greek copper-based artifacts. Corros. Mater. Degrad. 2(2), 325–340 (2021)

    Article  Google Scholar 

  42. E. Blakelock, M. Martinon-Torres, H.A. Veldhuijzen, T. Young, Slag inclusions in iron objects and the quest for provenance: an experiment and a case study. J. Archaeol. Sci. 36(8), 1745–1757 (2009)

    Article  Google Scholar 

  43. M. Cavallini, Thermodynamics applied to iron smelting techniques. Appl. Phys. A. 113(4), 1049–1053 (2013)

    Article  CAS  Google Scholar 

  44. J. Le Coze, Purification of iron and steels a continuous effort from 2000 BC to AD 2000. Mater. Trans. JIM. 41(1), 219–232 (2000)

    Article  Google Scholar 

  45. M.L. Wayman, Archaeometallurgical contributions to a better understanding of the past. Mater. Charact. 45(4–5), 259–267 (2000)

    Article  CAS  Google Scholar 

  46. H.J. Simon, G. Cibin, C. Reinhard, Y. Liu, E. Schofield, I.C. Freestone, Influence of microstructure on the corrosion of archaeological iron observed using 3D synchrotron micro-tomography. Corros. Sci. 159, 108132 (2019)

    Article  CAS  Google Scholar 

  47. B. Kaufman, D. Zori, A.A. Burke, M. Peilstöcker, Archaeometallurgical analysis of maritime steel nails from crusader Jaffa ca. 13th century AD. Mediterr. Archaeol. Archaeom. 18(2), 67–86 (2018)

    Google Scholar 

  48. D. Larreina-Garcia, J.A.Q. Castillo, Ironworking technology and social complexity in rural communities in the early medieval Basque Country. Antiquity. 92(364), 1–5 (2018)

    Article  Google Scholar 

  49. R. Saage, J. Peets, P. Kulu, P. Peetsalu, M. Viljus, Metallographic investigation of iron blooms and bars from the smithy site of Käku, Estonia, Fennoscandia Archaeologica. XXXIV, 46–58 (2017)

  50. A. Doménech-Carbó, M.A. Peiró-Ronda, J. Vives-Ferrándiz, G.S. Duffó, S. Farina, ‘Dry’ electrochemistry: a non-invasive approach to the characterization of archaeological iron objects. Electrochem. Commun. 125, 106992 (2020)

    Article  CAS  Google Scholar 

  51. R. Balasubramaniam, A.V. Ramesh Kumar, P. Dillmann, Characterization of rust on ancient Indian iron. Curr. Sci. 85(11), 1546–1555 (2003)

    CAS  Google Scholar 

  52. M. Bouchar, E. Foy, D. Neff, P. Dillmann, The complex corrosion system of a medieval iron rebar from the Bourges Cathedral. Characterization and reactivity studies. Corros. Sci. 76, 361–372 (2013)

    Article  CAS  Google Scholar 

  53. D. Ashkenazi, O. Golan, O. Tal, An archaeometallurgical study 13th-century arrowheads and bolts from the crusader castle of Arsuf/Arsur. Archaeometry. 55(2), 235–257 (2013)

    Article  CAS  Google Scholar 

  54. D.E. Watkinson, M.B. Rimmer, N.J. Emmerson, The influence of relative humidity and intrinsic chloride on post-excavation corrosion rates of archaeological wrought-iron. Stud. Conserv. 64(8), 456–471 (2019)

    Article  CAS  Google Scholar 

  55. J. Falkenberg, J. Mutterlose, U. Kaplan, U, Calcareous nannofossils in medieval mortar and mortar-based materials: a powerful tool for provenance analysis. Archaeometry. 63(1), 19–39 (2021). https://doi.org/10.1111/arcm.12626

    Article  CAS  Google Scholar 

  56. J. Sanjurjo-Sánchez, R. Blanco-Rotea, M.V. García-Quintela, C.I. Burbidge, OSL dating of earthen mortars from a medieval building in northwestern Spain: crypt of Basílica da Ascensión (Allariz, Ourense). Radiocarbon. 62(3), 679–692 (2020)

    Article  CAS  Google Scholar 

  57. R. Balasubramaniam, T. Laha, A. Srivastava, Long term corrosion behaviour of copper in soil: a study of archaeological analogues. Mater. Corros. 55(3), 194–202 (2004)

    Article  CAS  Google Scholar 

  58. M.C. Bernard, S. Joiret, S, Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochim. Acta. 54(22), 5199–5205 (2009)

    Article  CAS  Google Scholar 

  59. L.I. McCann, K. Trentelman, T. Possley, B. Golding, Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. J. Raman Spectrosc. 30(2), 121–132 (1999)

    Article  CAS  Google Scholar 

  60. G.M. Ingo, E. Angelini, G. Bultrini, I. Calliari, M. Dabala, T. De Caro, Study of long-term corrosion layers grown on high-tin leaded bronzes by means of the combined use of GDOES and SEM+ EDS. Surf. Interface Anal. 34(1), 337–342 (2002)

    Article  CAS  Google Scholar 

  61. T. Kosec, H.O. Ćurković, A. Legat, Investigation of the corrosion protection of chemically and electrochemically formed patinas on recent bronze. Electrochim. Acta. 56(2), 722–731 (2010)

    Article  CAS  Google Scholar 

  62. M. Serghini-Idrissi, M.C. Bernard, F.Z. Harrif, S. Joiret, K. Rahmouni, A. Srhiri, H. Takenouti, V. Vivier, M. Ziani, Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochim. Acta. 50(24), 4699–4709 (2005)

    Article  CAS  Google Scholar 

  63. M. Cohen, D. Ashkenazi, G.I. Bijovsky, A. Inberg, S. Klein, D. Cvikel, Copper alloy coins from the Byzantine-period Ma‘agan Mikhael B shipwreck, Israel: metallurgical characterization. Metall. Microstruct. Anal. 7(5), 542–560 (2018)

    Article  CAS  Google Scholar 

  64. G.M. Ingo, T. De Caro, C. Riccucci, E. Angelini, S. Grassini, S. Balbi, P. Bernardini, D. Salvi, L. Bousselmi, A. Cilingiroglu, M. Gener, M, Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A. 83(4), 513–520 (2006)

    Article  CAS  Google Scholar 

  65. A. Arizzi, G. Cultrone, Mortars and plasters—how to characterise hydraulic mortars. Archaeol. Anthropol. Sci. 13(9), 1–22 (2021)

    Article  Google Scholar 

  66. D. Ashkenazi, R. Shnabel, A. Lichtenberger, O. Tal, Chemical composition and microstructure analysis of plaster and pigments retieved from a decorated house wall at Seleucid Tell Iẓṭabba (Nysa-Scythopolis, Beth She’an, Israel). Mediterr. Archaeol. Archaeom. 21(3), 89–122 (2021)

    Google Scholar 

  67. P.T. Craddock, The composition of the copper alloys used by the Greek, Etruscan and Roman civilisations: 2. The Archaic, Classical and Hellenistic Greeks. J. Archaeol. Sci. 4(2), 103–123 (1977)

    Article  CAS  Google Scholar 

  68. M. Martinón-Torres, A. Benzonelli, Z. Stos-Gale, R. Henry, Argentiferous copper extraction and post-medieval metals trade: identification and origins of post-medieval Reißscheiben ingots found in Wiltshire, England. Hist. Metall. 52(1), 38–47 (2018)

    Google Scholar 

  69. R.F. Tylecote, A History of Metallurgy (The Metals Society, London, 1992)

    Google Scholar 

  70. A.L. Grevey, V. Vignal, H. Krawiec, P. Ozga, K. Peche-Quilichini, A. Rivalan, F. Mazière, Microstructure and long-term corrosion of archaeological iron alloy artefacts. Herit. Sci. 8(1), 1–19 (2020)

    Article  CAS  Google Scholar 

  71. I. Stepanov, L. Weeks, K. Franke, C. Cable, B. Overlaet, P. Magee, M. Händel, Y.Y.A. Aali, M.B. Radwan, H. Zein, Methodologies for the investigation of corroded iron objects: examples from prehistoric sites in South-eastern Arabia and Western Iran. Sci. Tech. Archaeol. Res. 3(2), 270–284 (2017)

    Google Scholar 

  72. P. Dillmann, F. Mazaudier, S. Hœrlé, Advances in understanding atmospheric corrosion of iron. I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corros. Sci. 46(6), 1401–1429 (2004)

    Article  CAS  Google Scholar 

  73. D. Neff, S. Reguer, L. Bellot-Gurlet, P. Dillmann, R. Bertholon, Structural characterization of corrosion products on archaeological iron: an integrated analytical approach to establish corrosion forms. J. Raman Spectrosc. 35(8–9), 739–745 (2004)

    Article  CAS  Google Scholar 

  74. D. Neff, P. Dillmann, L. Bellot-Gurlet, G. Beranger, Corrosion of iron archaeological artefacts in soil: Characterisation of the corrosion system. Corros. Sci. 47(2), 515–535 (2005)

    Article  CAS  Google Scholar 

  75. C. Degrigny, D. Vella, S. Golfomitsou, J. Crawford, Characterisation of corrosion product layers on atmospherically corroded historic ferrous objects: application to the armour of the Palace Armoury, Valletta, Malta, in Strategies for Saving our Cultural Heritage, Proceedings of the International Conference on Conservation Strategies for Saving Indoor Metallic Collections, Cairo. ed. by V. Argyropoulos, A. Hein, M. Abdel Harith (Technological Educational Institute of Athens, Athens, 2007), pp. 31–39.

  76. P. Kuisma-Kursula, Accuracy, precision and detection limits of SEM–WDS, SEM–EDS and PIXE in the multi-elemental analysis of medieval glass. X-Ray Spectrom. Int. J. 29(1), 111–118 (2000)

    CAS  Google Scholar 

  77. D.E. Newbury, N.W. Ritchie, Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative? Scanning. 35(3), 141–168 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research for this article was conducted as part of the ISF research Grant no. 2050/17, headed by O. Tal. The authors wish to thank Tomer Reuveni from the Wolfson Applied Materials Research Center, Tel Aviv University, for his valuable SEM technical assistance; and Naomi Paz for the linguistic editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ashkenazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shotten-Hallel, V., Ashkenazi, D. & Tal, O. Archaeometallurgical Analysis of Thirteenth-Century Bronze and Iron Construction Implements from the Walls of the Frankish Castle at Arsuf/Arsur. Metallogr. Microstruct. Anal. 11, 255–280 (2022). https://doi.org/10.1007/s13632-022-00838-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-022-00838-x

Keywords

  • Archaeometallurgy
  • Apollonia-Arsuf
  • Arsur castle
  • Building archaeology
  • Copper and iron
  • Microstructure