Skip to main content
Log in

Characterization of Microstructure and Chemical Microinhomogeneity of HP40NbTi Cast Alloy After Different Crystallization Rates

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The mechanism of formation of chemical inhomogeneity of phases during crystallization at the melt cooling rate in the range of 1–1000 K/s in the heat-resistant HP40NbTi alloy is studied by optical microscopy, electron microscopy, electron microprobe analysis, and x-ray mapping. The forming process of the phase’s chemical compositions in a multicomponent HP40NbTi alloy during crystallization is complex and extremely unstable. The resulting alloy phases are characterized by significant chemical heterogeneity, degree of which is largely determined by the melt cooling rate. The most degree of chemical inhomogeneity of phases occurs when the melt cooling rate is 100–300 K/s, which corresponds to the conditions of welding and cladding, involving the process of alloys drip meltdown of electrode materials and their solidification on cooled surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Garbiak, W. Jasinski, B. Piekarski, Materials for reformer furnace tubes. History of evolution. Arch. Found. Eng. 11, 47–52 (2011)

    CAS  Google Scholar 

  2. B. Piekarski, J. Kubicki, Creep-resistant austenitic cast steel. Arch. Found. Eng. 8(2), 115–120 (2008)

    CAS  Google Scholar 

  3. H.M. Tawancy, A. Ul-Hamid, A.I. Mohammed, N.M. Abbas, Effect of materials selection and design on the performance of an engineering product—an example from petrochemical industry. Mater. Des. 28, 686–703 (2007)

    Article  CAS  Google Scholar 

  4. D.J. Tillack, J.E. Guthrie, Wrought and Cast Heat-Resistant Stainless Steels and Nickel Alloys for the Refining and Petrochemical Industries. Technical Series, vol 10 (The Nickel Development Institute, Toronto, 1998), pp. 71–85

    Google Scholar 

  5. L. Bonaccorsi, E. Guglielmino, R. Pino, C. Servetto, A. Sili, Damage analysis in Fe-Cr-Ni centrifugally cast alloy tubes for reforming furnaces. Eng. Fail. Anal. 36, 65–74 (2014)

    Article  CAS  Google Scholar 

  6. S. Borjali, S.R. Allahkaram, H. Khosravi, Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition. Mater. Des. 34, 65–73 (2012)

    Article  CAS  Google Scholar 

  7. M.N. Ilman, Analysis of material degradation and life assessment of 25Cr-38Ni-Mo-Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant. Eng. Fail. Anal. 42, 100–108 (2014)

    Article  CAS  Google Scholar 

  8. L.H. De Almeida, A.F. Ribeiro, I. Le May, Microstructural characterization of modified 25Cr-35Ni centrifugally cast steel furnace tubes. Mater. Char. 49, 219–229 (2003)

    Article  Google Scholar 

  9. B. Piekarski, Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni-Cr cast austenitic steels. Mater. Char. 47, 181–186 (2001)

    Article  CAS  Google Scholar 

  10. A.I. Rudskoy, A.S. Oryshchenko, SYu. Kondrat’ev, G.P. Anastasiadi, M.D. Fuks, S.N. Petrov, Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2. Met. Sci. Heat. Treat. 55, 209–215 (2013)

    Article  CAS  Google Scholar 

  11. A. Alvino, D. Lega, F. Giacobbe, V. Mazzocchi, A. Rinaldi, Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions. Eng. Fail. Anal. 17, 1526–1541 (2010)

    Article  CAS  Google Scholar 

  12. J. Guo, C. Cheng, H. Li, J. Zhao, X. Min, Microstructural analysis of Cr35Ni45Nb heat-resistant steel after a five-year service in pyrolysis furnace. Eng. Fail. Anal. 79, 625–633 (2017)

    Article  CAS  Google Scholar 

  13. E.A. Kenik, P.J. Maziasz, R.W. Swindeman, J. Cervenka, D. May, Structure and phase stability in cast modified-HP austenite after long-term ageing. Scr. Mater. 49, 117–122 (2003)

    Article  CAS  Google Scholar 

  14. L.S. Monobe, C.G. Schőn, Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni+Nb alloy tube in the ̀as cast́ and aged states. J. Mater. Res. Technol. 2, 195–201 (2013)

    Article  CAS  Google Scholar 

  15. A.I. Rudskoy, SYu. Kondrat’ev, G.P. Anastasiadi, A.S. Oryshchenko, M.D. Fuks, S.N. Petrov, Transformation of the structure of refractory alloy 0.45C-26Cr-33Ni-2Si-2Nb during a long-term high-temperature hold. Met. Sci. Heat. Treat. 55, 517–525 (2014)

    Article  CAS  Google Scholar 

  16. A.I. Rudskoy, A.S. Oryshchenko, SYu. Kondrat’ev, G.P. Anastasiadi, M.D. Fuks, Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1. Met. Sci. Heat. Treat. 56, 3–8 (2014)

    Article  CAS  Google Scholar 

  17. A.I. Rudskoy, SYu. Kondrat’ev, G.P. Anastasiadi, A.S. Oryshchenko, M.D. Fuks, Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2. Met. Sci. Heat. Treat. 56, 124–130 (2014)

    Article  CAS  Google Scholar 

  18. Z. Zhu, C. Cheng, J. Zhao, L. Wang, High temperature corrosion and microstructure deterioration of KHR35H radiant tubes in continuous annealing furnace. Eng. Fail. Anal. 21, 59–66 (2012)

    Article  CAS  Google Scholar 

  19. M.P. Dewar, A.P. Gerlich, Correlation between experimental and calculated phase fractions in aged 20Cr32Ni1Nb austenitic stainless steels containing nitrogen. Metall. Mater. Trans. A. 44, 627–639 (2013)

    Article  CAS  Google Scholar 

  20. S.Y. Kondratev, G.P. Anastasiadi, S.N. Petrov, A.V. Ptashnik, Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure. Metall. Mater. Trans. A. 48, 482–492 (2017)

    Article  CAS  Google Scholar 

  21. A.I. Rudskoi, G.P. Anastasiadi, S.Y. Kondrat’ev, A.S. Oryshchenko, M.D. Fuks, Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C-26Cr-33Ni-2Si-2Nb superalloy. Phys. Met. Metall. 115, 1–11 (2014)

    Article  Google Scholar 

  22. SYu. Kondrat’ev, A.V. Ptashnik, G.P. Anastasiadi, S.N. Petrov, Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy. Met. Sci. Heat. Treat. 57, 402–409 (2015)

    Article  CAS  Google Scholar 

  23. G.P. Anastasiadi, On the growth of new phase particles which is limited by the diffusion of one component. Phys. Met. Metall. 47, 173–175 (1979)

    Google Scholar 

  24. G.P. Anastasiadi, R.V. Kolchina, L.N. Smirnova, Effect of cooling rate and heat treatment on the chemical microinhomogeneity of steel 09Kh16N4BL. Met. Sci. Heat. Treat. 27, 678–680 (1985)

    Article  Google Scholar 

  25. M. Behúlová, M. Lipták, P. Grga, W. Löser, H.-G. Lindenkreuz, Comparison of microstructures developed during solidification of undercooled tool steel in levitation and on a substrate. J. Phys. Conf. Ser. 144, 012099 (2009)

    Article  Google Scholar 

  26. P.-F. Paradis, T. Ishikawa, Y. Watanabe, J. Okada, Hybrid processing combining electrostatic levitation and laser heating: application to terrestrial analogues of asteroid materials. Adv. Opt. Technol. 2011, 454829 (2011)

    Article  Google Scholar 

  27. L. Shen, J. Gong, X. Qin, Experimental investigation and numerical simulation of carburization layer evolution of Cr25Ni35Nb and Cr35Ni45Nb steel. Rev. Adv. Mater. Sci. 33, 142–147 (2013)

    CAS  Google Scholar 

  28. S.J. Rothman, L.J. Nowicki, G.E. Murch, Self-diffusion in austenitic Fe-Cr-Ni alloys. J. Phys. F Metal. Phys. 10, 383–398 (1980)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Yu. Kondrat’ev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.Y., Anastasiadi, G.P. Characterization of Microstructure and Chemical Microinhomogeneity of HP40NbTi Cast Alloy After Different Crystallization Rates. Metallogr. Microstruct. Anal. 10, 675–683 (2021). https://doi.org/10.1007/s13632-021-00794-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00794-y

Keywords

Navigation