Skip to main content

Advertisement

Log in

Fracture Behavior and Mechanical Properties of a Thermomechanical TRIP Steel Under Simulated Heat Treatment Conditions

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this research, hypereutectoid Si–Mn TRIP steel was prepared via casting method followed by thermomechanical processing and different heat treatments. Subsequently, fracture behavior and mechanical properties of the prepared steel were investigated. The time–temperature–transformation curves of the specimens were predicted by a simulation software. Their mechanical properties were studied through tensile, hardness, and impact tests. The microstructure and fracture behavior of the specimens were evaluated using an optical microscope, scanning electron microscope and fractographic analysis. Results indicated that the heat-treated sample containing a multi-phase microstructure of bainite, martensite, pearlite and retained austenite, had the highest ultimate tensile strength around 1,300 MPa. The software predictions of the heat treatments were in good accordance with the microstructural results. The samples have undergone thermomechanical process and heat treatment including isothermal transformation showed brittle behavior with intergranular and cleavage fracture surfaces. In addition, the two-stage quenching cycles resulted in dual-phase microstructure composed of martensite embedded in retained austenite with a combination of brittle and ductile fracture behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Radajewski, R. Eckner, S. Decker, M. Wendler, L. Krüger, M. Radajewski, R. Eckner, S. Decker, M. Wendler, L. Krüger, Influence of temperature and strain rate during thermomechanical treatment of a metastable austenitic TRIP steel compacted by SPS/FAST. Adv. Eng. Mater. 21, 1800617 (2019)

    Article  Google Scholar 

  2. A.S. Thakare, S.P. Butee, K.R. Kamble, A.S. Thakare, S.P. Butee, K.R. Kamble, Improvement in mechanical properties of 42CrMo4 steel through novel thermomechanical processing treatment. Metallogr. Microstruct. Anal. 9, 759–773 (2020)

    Article  CAS  Google Scholar 

  3. O. Altuntaş, A. Güral, O. Altuntaş, A. Güral, Designing spherical cementite in bainitic matrix (SCBM) microstructures in high carbon powder metal steels to improve dry sliding wear resistance. Mater. Lett. 249, 185–188 (2019)

    Article  Google Scholar 

  4. L. Wang, J.G. Speer, L. Wang, J.G. Speer, Quenching and partitioning steel heat treatment. Metallogr. Microstruct. Anal. 2, 268–281 (2013)

    Article  Google Scholar 

  5. G. Qiu, D. Zhan, C. Li, Y. Yang, M. Qi, Z. Jiang, H. Zhang, G. Qiu, D. Zhan, C. Li, Y. Yang, M. Qi, Z. Jiang, H. Zhang, Effects of yttrium and heat treatment on the microstructure and mechanical properties of CLAM steel. J. Mater. Eng. Perform. 29, 42–52 (2020)

    Article  CAS  Google Scholar 

  6. F. Hadef, F. Hadef, Effect of high-energy ball milling on structure and properties of some intermetallic alloys: a mini review. Metallogr. Microstruct. Anal. 8, 430–444 (2019)

    Article  CAS  Google Scholar 

  7. H. Wang, L. Hou, P. Ou, X. Wang, Y. Li, L. Shen, H. Zhao, H. Cui, J. Zhang, H. Wang, L. Hou, P. Ou, X. Wang, Y. Li, L. Shen, H. Zhao, H. Cui, J. Zhang, Enhanced microstructures and properties of spray-formed M3:2 high-speed steels by niobium addition and thermal-mechanical treatment. J. Mater. Res. 34, 1043–1053 (2019)

    Article  Google Scholar 

  8. A. Ekberg, B. Åkesson, E. Kabo, A. Ekberg, B. Åkesson, E. Kabo, Wheel/rail rolling contact fatigue–probe, predict, prevent. Wear. 314, 2–12 (2014)

    Article  CAS  Google Scholar 

  9. D.W. Suh, S.J. Kim, D.W. Suh, S.J. Kim, Medium Mn transformation-induced plasticity steels: recent progress and challenges. Scr. Mater. 126, 63–67 (2017)

    Article  CAS  Google Scholar 

  10. M.Y. Demeri, Advanced high-strength steels: science, technology, and applications (ASM International, Cleveland, 2013)

    Book  Google Scholar 

  11. J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater. Sci. Eng. A. 528, 4516–4521 (2011)

    Article  Google Scholar 

  12. N. Lun, D.C. Saha, A. Macwan, H. Pan, L. Wang, F. Goodwin, Y. Zhou, N. Lun, D.C. Saha, A. Macwan, H. Pan, L. Wang, F. Goodwin, Y. Zhou, Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel. Mater. Des. 2017(131), 450–459 (2017)

    Article  Google Scholar 

  13. K.I. Sugimoto, A.K. Srivastava, K.I. Sugimoto, A.K. Srivastava, Microstructure and mechanical properties of a TRIP-aided martensitic steel. Metallogr. Microstruct. Anal. 4, 344–354 (2015)

    Article  CAS  Google Scholar 

  14. Z.L. Li, D. Chen, J. Kang, G. Yuan, G.D. Wang, Z.L. Li, D. Chen, J. Kang, G. Yuan, G.D. Wang, The effect of heat treatment and precipitation on grain growth of TRIP steel. Steel Res. Int. 89, 1700484 (2018)

    Article  Google Scholar 

  15. Z. Zhang, K.I. Manabe, Y. Li, F. Zhu, Z. Zhang, K.I. Manabe, Y. Li, F. Zhu, Effect of isothermal bainite treatment on microstructure and mechanical properties of low-carbon TRIP seamless steel tube. Steel Res. Int. 83, 645–652 (2012)

    Article  CAS  Google Scholar 

  16. H.D. Van, C.N. Van, T.T. Ngoc, T.S. Manh, H.D. Van, C.N. Van, T.T. Ngoc, T.S. Manh, Influence of heat treatment on microstructure and mechanical properties of a CMnSi TRIP steel using design of experiment. Mater. Today Proc. 5, 24664–24674 (2018)

    Article  CAS  Google Scholar 

  17. Z. Chen, J. Gu, L. Han, Z. Chen, J. Gu, L. Han, Bainite transformation characteristics of high Si hypereutectoid bearing steel. Metallogr. Microstruct. Anal. 7, 3–10 (2018)

    Article  CAS  Google Scholar 

  18. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Microstructure-based constitutive modeling of TRIP steel: prediction of ductility and failure modes under different loading conditions. Acta Mater. 57, 2592–2604 (2009)

    Article  CAS  Google Scholar 

  19. M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, J. Banhart, M. Mukherjee, U. Ramamurty, F. Garcia-Moreno, J. Banhart, The effect of cooling rate on the structure and properties of closed-cell aluminium foams. Acta Mater. 58, 5031–5042 (2010)

    Article  CAS  Google Scholar 

  20. Garcia, C.I., Parish, C., Ahn, Y.S., Hua, M., DeArdo, A.J., In, Thermomechanical processing challenges in the cold mill. Proceedings of the International Conference on Advanced High-Strength Sheet Steels for Automotive Applications, (AIST, Warrendale, 2004), p. 285–91.

  21. M. Shirdel, H. Mirzadeh, M.H. Parsa, M. Shirdel, H. Mirzadeh, M.H. Parsa, Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: mechanisms, microstructures, mechanical properties, and TRIP effect. Mater. Charact. 103, 150–161 (2015)

    Article  CAS  Google Scholar 

  22. S. Arjomandi, H.R. Jafarian, N. Park, S. Arjomandi, H.R. Jafarian, N. Park, A substantial improvement of tensile properties through microstructure engineering in a high Ni-0.2 C TRIP steel under severe plastic deformation. Mater. Charact. 155, 109826 (2019)

    Article  CAS  Google Scholar 

  23. A.K. Srivastava, G. Jha, N. Gope, S.B. Singh, A.K. Srivastava, G. Jha, N. Gope, S.B. Singh, Effect of heat treatment on microstructure and mechanical properties of cold rolled C-Mn–Si TRIP-aided steel. Mater. Charact. 57, 127–135 (2006)

    Article  CAS  Google Scholar 

  24. A. Belyakov, R. Kaibyshev, V. Torganchuk, A. Belyakov, R. Kaibyshev, V. Torganchuk, Microstructure and Mechanical Properties of 18% Mn TWIP/TRIP steels processed by warm or hot rolling. Steel Res. Int. 88, 1600123 (2017)

    Article  Google Scholar 

  25. Dalwatkar, R., N. Prabhu, R.K.P. Singh, Effect of austempering temperature and time on mechanical properties of SAE 9260 steel. In AIP Conference Proceedings, 2018. 1957 (1), p. 040001.

  26. C. Zhao, C. Zhang, W.Q. Cao, Z.G. Yang, C. Zhao, C. Zhang, W.Q. Cao, Z.G. Yang, Variation in retained austenite content and mechanical properties of 02 C–7Mn steel after intercritical annealing. Int. J. Min. Metall. Mater. 23, 161–167 (2016)

    Article  CAS  Google Scholar 

  27. Y.F. Shen, X.X. Dong, X.T. Song, N. Jia, Y.F. Shen, X.X. Dong, X.T. Song, N. Jia, Carbon content-tuned martensite transformation in low-alloy TRIP steels. Sci. Rep. 9, 1–9 (2019)

    Google Scholar 

  28. S. Lee, W. Woo, B.C. de Cooman, S. Lee, W. Woo, B.C. de Cooman, Analysis of the tensile behavior of 12 pct Mn multi-phase (α+ γ) TWIP+ TRIP steel by neutron diffraction. Metall. Mater. Trans. A. 47, 2125–2140 (2016)

    Article  CAS  Google Scholar 

  29. A. Shibata, T. Matsuoka, A. Ueno, N. Tsuji, A. Shibata, T. Matsuoka, A. Ueno, N. Tsuji, Fracture surface topography analysis of the hydrogen-related fracture propagation process in martensitic steel. Int. J. Fract. 205, 73–82 (2017)

    Article  CAS  Google Scholar 

  30. T. Kobayashi, D.A. Shockey, T. Kobayashi, D.A. Shockey, A fractographic investigation of thermal embrittlement in cast duplex stainless steel. Metall. Trans. A. 18, 1941–1949 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Sameezadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanlou, S., Sameezadeh, M. & Vaseghi, M. Fracture Behavior and Mechanical Properties of a Thermomechanical TRIP Steel Under Simulated Heat Treatment Conditions. Metallogr. Microstruct. Anal. 10, 158–166 (2021). https://doi.org/10.1007/s13632-021-00723-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-021-00723-z

Keywords

Navigation