Skip to main content
Log in

Voronoi Diagram-Based Microstructure Modeling and Micromechanical Analysis of Quenched C35 Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, austenite–martensite transformation in a low alloy steel is modeled using Voronoi algorithm. The evolved fraction of martensite is predicted from the geometry of the Voronoi diagram constructed, incorporating nucleation kinetics of martensite and Voronoi algorithm. The obtained results are validated against the Koistinen–Marburger equation. The geometrical properties of evolved martensite phase are identified using the characteristics of Poisson–Voronoi diagram. Finally, the microstructure developed is used to analyze local stress–strain behavior of different phases in the microscale. Results show that higher stress values are distributed in martensite phase and higher strain values are distributed in austenite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. George E. Totten, Steel Heat Treatment, Metallurgy and Technology, 2nd edn. (CRC Press, FL, 2007)

    Google Scholar 

  2. F. Liu, F. Sommer, C. Bos, E.J. Mittemeijer, Analysis of solid state phase transformation kinetics: models and recipes. Int. Mater. Rev. 52, 193 (2007)

    Article  CAS  Google Scholar 

  3. M. Avrami, Granulation, Phase change and microstructure kinetics of phase change III. J. Chem. Phys. 9, 177 (1941)

    Article  CAS  Google Scholar 

  4. M. Avrami, Kinetics of phase change I. J Chem. Phys. 1939(7), 1103 (1939)

    Article  Google Scholar 

  5. M. Avrami, Kinetics of phase change II: transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212 (1940)

    Article  CAS  Google Scholar 

  6. A.N. Kolmogorov, On statistical theory of metal crystallization. Izv. Akad. Nauk. Ser. Mat. 3, 355 (1937)

    Google Scholar 

  7. W.A. Johnson, R.F. Mehl, Reaction kinetics of progress of nucleation and growth. Trans. Am. Inst. Min. Metal. Pet. Eng. 132, 416–442 (1939)

  8. F. Liu, F. Somer, E.J. Mittemeijer, An analytical model for isothermal and isochronal transformation kinetics. J. Mater. Sci. 39, 1621–1634 (2004)

    Article  CAS  Google Scholar 

  9. A.T.W. Kempen, F. Sommer, E.J. Mittemeijer, Determination and interpretation of isothermal transformation kinetics; effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37, 1321–1322 (2002)

    Article  CAS  Google Scholar 

  10. F.G. Caballero, C. Capdevila, Garcia De Andres, Modeling of kinetics of austenite formation in steel with different initial microstructure. ISJ Int. 41, 1093–1102 (2001)

    CAS  Google Scholar 

  11. C.H. Gur, J. Pan, Thermal Process Modeling of Steels (CRC Press, Baco Raton, 2009)

    Google Scholar 

  12. M. Miulitzer, Computer simulation of microstructure evolution in low carbon sheet steels. ISIJ Int. 47, 1 (2007)

    Article  Google Scholar 

  13. D. Weaire, J.A. Glazier, Modeling grain growth and soap forth coarsening: past, present, future. Mater. Sci. Forum 27, 94–96 (1992)

    Google Scholar 

  14. D. Rabbe, Cellular automata in material science with particular references to recrystallization simulation. Ann. Rev. Mater. Res 32, 53 (2002)

    Article  Google Scholar 

  15. H.Z. Zhao, X.H. Liu, G.D. Wang, Progress in modeling of phase transformation kinetics. J. Iron. Steel Res. Int. 13, 68–73 (2006)

    Article  CAS  Google Scholar 

  16. R.S. Qin, Modeling and simulation of microstructure evolution in steel processing. Mater. Manuf. Processes 26, 132–136 (2011)

    Article  CAS  Google Scholar 

  17. O. Shchyglo, G. Du, J.K. Engels, I. Steinbach, Phase-field simulation of martensite microstructure in low-carbon steel. Acta Mater. 175, 415–425 (2019)

    Article  CAS  Google Scholar 

  18. S. Raghavan, S.S. Sahay, Modeling the grain growth kinetics by cellular automaton. Mater. Sci. Eng., A 445, 203–209 (2007)

    Article  Google Scholar 

  19. V. Ragahavan. Solid state phase transformations. Martensitic Transformations (PHI, Delhi, 2015), pp. 140–163

  20. D.P. Koistinen, R.E. Marburger, A general equation prescribing the extend of austenite-martensite transformation in pure iron-carbon alloys and plain carbon steel. Acta Metall. 7, 59–60 (1958)

    Article  Google Scholar 

  21. Q. Gao, C. Wang, F. Qu, Y. Wang, Z. Qiao, Martensite transformation kinetics in 9Cr–1.7 W–0.4 Mo–Co ferritic steel. J Alloys Compd 610, 322–330 (2014)

    Article  CAS  Google Scholar 

  22. G.B. Olson, M. Cohen, A general mechanism of martensitic nucletaion: part1- General concepts and the FCC-HCP transformation. Metall. Trans. A 7, 1897–1904 (1976)

    Google Scholar 

  23. S.M. Cotes, A. Fernadez, A.F. Guillermet, M. Sade, FCC/HCP martensitic transformation in the FE-Mn system: part II. Driving force and thermodynamics of nucletaion process. Metall. Mater. Trans. A 35, 83–91 (2004)

    Article  Google Scholar 

  24. G.B. Olson, M. Cohen, A general mechanism of martensitic nucleation: part III. Kinetics of martensitic nucleation. Metall. Trans. A 7, 1915–1923 (1976)

    Article  Google Scholar 

  25. X.Q. Zhao, Y.F. Han, Kinetics of homogeneous martensitic nucleation in iron-based alloys. Metallurgical and Materials Transactions A 30, 884–887 (1999)

    Article  Google Scholar 

  26. Y. Wen, F. Huang, Y. Rong, Z. Guo Evaluation of kinetic equation of athermal martensitic transformation in low carbon steel. in The 8th pacific international congress on advanced materials processing (2013)

  27. C. Celada-Casero, J. Sietsma, M.J. Santofimia, The role of the austenite grain size in the martensitic transformation in low carbon steels. Mater. Des. 167, 107625 (2019)

    Article  CAS  Google Scholar 

  28. H.S. Yang, H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature. Scripta Mater. 60, 493–495 (2009)

    Article  CAS  Google Scholar 

  29. J.C. Fisher, J.H. Hollomon, D. Turnbull, Kinetics of the austenite-Martensite transformations. Metals Trans 185, 691–700 (1949)

    Google Scholar 

  30. J.R.C. Guimarães, P.R. Rios, Initial nucleation kinetics of martensite transformation. J. Mater. Sci. 43, 5206–5210 (2008)

    Article  Google Scholar 

  31. A.R. Entwisle, The kinetics of martensite formation in steel. Metall Trans 2, 2395–2407 (1971)

    Article  CAS  Google Scholar 

  32. F. Huyan, P. Hedström, A. Borgenstam, Modelling of the fraction of martensite in low-alloy steels. Mater Today Proc 2, S561–S564 (2015)

    Article  Google Scholar 

  33. H. Kitahara, R. Ueji, M. Ueda, N. Tsuji, Y. Minamino, Crystallographic analysis of plate martensite in Fe-28.5% at% Ni by FE-SEM/EBSD. Mater. Charact. 54, 378–386 (2005)

    Article  CAS  Google Scholar 

  34. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323–5331 (2006)

    Article  CAS  Google Scholar 

  35. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Crystallographic features of lath martensite in low-carbon steel. Acta Mater. 54, 1279–1288 (2006)

    Article  CAS  Google Scholar 

  36. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, A.T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51, 1789–1799 (2003)

    Article  CAS  Google Scholar 

  37. Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu, Spatial Tessellations second edition (Wiley, New York, 2000)

    Book  Google Scholar 

  38. S. Katani, S. Ziaei-Rad, N. Nouri, N. Saeidi, J. Kadkhodapour, N. Torabian, S. Schmauder, Microstructure modelling of dual-phase steel using SEM micrographs and Voronoi polycrystal models. Metallogr. Microstruct. Anal. 2, 156–169 (2013)

    Article  CAS  Google Scholar 

  39. M. Nygårds, P. Gudmundson, Micromechanical modeling of ferrite/pearlitic steels. Mater. Sci. Eng., A 325, 435–443 (2002)

    Article  Google Scholar 

  40. M. Nygårds, P. Gudmundson, Three-dimensional periodic Voronoi grain models and micromechanical FE-simulations of a two-phase steel. Comput. Mater. Sci. 24, 513–519 (2002)

    Article  Google Scholar 

  41. N. Ishikawa, D.M. Parks, S. Socrate, M. Kurihara, Micromechanical modeling of ferrite–pearlite steels using finite element unit cell models. ISIJ Int. 40, 1170–1179 (2000)

    Article  CAS  Google Scholar 

  42. H. Koushyar, B. Tavakol, V. Madhvan, Micromechanical modeling of ferrite/pearlite steels. in Proceedings of fourth annual GRASP symposium, Wichita State university (2008)

  43. P. Tao, J.M. Gong, Y.F. Wang, Y. Jiang, Y. Li, W.W. Cen, Characterization on stress-strain behavior of ferrite and austenite in a 2205 duplex stainless steel based on nanoindentation and finite element method. Results Phys 11, 377–384 (2018)

    Article  Google Scholar 

  44. F. Sun, E.D. Meade, P.O. Noel, Microscale modelling of the deformation of a martensitic steel using the Voronoi tessellation method. J. Mech. Phys. Solids 113, 35–55 (2018)

    Article  CAS  Google Scholar 

  45. O. Cavusoglu, S. Toros, H. Gurun, Microstructure based modeling of stress-strain relationship on dual phase steels, Ironmak steelmak 46(4), 313–319 (2019)

  46. F.M. Al-Abbasi, Micromechanical modeling of ferrite-pearlite steels. Mater. Sci. Eng., A 527(26), 6904–6916 (2010)

    Article  Google Scholar 

  47. J. Zhou, A.M. Gokhale, A. Gurumurthy, S.P. Bhat, Realistic microstructural RVE-based simulations of stress–strain behavior of a dual-phase steel having high martensite volume fraction. Mater. Sci. Eng., A 630, 107–115 (2015)

    Article  CAS  Google Scholar 

  48. L. Kaufman, M. Cohen, Thermodynamics and kinetics of martensitic transformations. Prog Met. Phys. 7, 165–246 (1958)

  49. J. Trzaska, Calculation of critical temperatures by empirical formulae. Arch. Metall. Mater. 61(2B), 981–986 (2006)

    Google Scholar 

  50. J.C. Fisher, Martensite nucleation in substitutional iron alloys. JOM 5, 918–920 (1953)

    Article  CAS  Google Scholar 

  51. L. Kaufman, M. Cohen, Thermodynamics and kinetics of martensitic transformations. Prog Metal Phys. 7, 165–246 (1958)

    Article  CAS  Google Scholar 

  52. S.E. Offerman, N.H. van Dijk, J. Sietsma, E.M. Lauridsen, L. Margulies, S. Grigull, H.F. Poulsen, S. van der Zwagg, Phase transformations in steel studied by 3DXRD microscopy. Nucl Instrum Meth Phy Res B 246, 194–200 (2006)

    Article  CAS  Google Scholar 

  53. C.A. Scneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  Google Scholar 

  54. P. Ludwik in Elemte der techischen mechanik (Springer, Berlin, 1909)

  55. G. Resinger, E.A. Waerner, F.D. Fisher, Micromechanical modeling of martensite transformation in random microstructure. Int. J. Solid Structures 35, 2457–2473 (1998)

    Article  Google Scholar 

  56. J.S. Ferenc, Z. Néda, On the size distribution of Poisson Voronoi cells. Phys. A 385, 518 (2007)

    Article  CAS  Google Scholar 

  57. A. Rahnama, R.S. Qin, Modeling of microstructure of martensitic steel. Comput. Mater. Sci. 96, 102–107 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sanchu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanchu, S., Biju, N. & Namboothiri, V.N.N. Voronoi Diagram-Based Microstructure Modeling and Micromechanical Analysis of Quenched C35 Steel. Metallogr. Microstruct. Anal. 10, 96–105 (2021). https://doi.org/10.1007/s13632-020-00706-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00706-6

Keywords

Navigation