Skip to main content
Log in

The Microstructure and the Phase Stability of a Cu–30at.%Al Alloy Obtained by Reactive Milling and Quenching

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The phase stability of a Cu–30at.%Al milled and quenched is studied by differential scanning calorimetry and in situ high-temperature X-ray diffraction (HT-XRD). This analysis was performed from room temperature to 700 °C. The grain growth at fixed temperatures was analyzed by HT-XRD. The size of the γ2 phase grains do not change at a constant temperature with the time at temperatures below 600 °C. This behavior was attributed to the pulling force resulting from the presence of nanometric grains. The presence of nanometric grains was confirmed by TEM. The lack of grain size growth at a constant temperature is a promising result for the technological application of the Cu–30at.%Al milled and quenched as a shape memory alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Oishi, L.C. Brown, Stress-induced martensite formation in Cu–Al–Ni alloys. Metallurg. Trans. 2(7), 1971–1977 (1971)

    CAS  Google Scholar 

  2. A. Agrawal, R.K. Dube, Methods of fabricating Cu–Al–Ni shape memory alloy. J. Alloys Compd. 750, 235–247 (2018)

    Article  CAS  Google Scholar 

  3. R. Dasgupta, A look into Cu-based shape memory alloys: present scenario and future prospects. J. Mater. Res. 29(16), 1681–1698 (2014)

    Article  CAS  Google Scholar 

  4. J.L. Murray, The aluminium–copper system. Int. Metals Rev. 30(1), 211–233 (1985)

    CAS  Google Scholar 

  5. G. Roulin, P. Duval, Initial stages of ordering obtained by tempering of disorder martensitic phase of Cu–Al alloys. Scr. Mater. 37, 45–51 (1997)

    Article  CAS  Google Scholar 

  6. Z. Nishiyama, J. Kakinoki, S. Kajiwara, Stacking faults in the martensite of Cu–Al alloy. J. Phys. Soc. Jpn. 20(7), 1192–1211 (1965)

    Article  CAS  Google Scholar 

  7. P.R. Swann, H. Warlimont, The electron-metallography and crystallography of copper–aluminum martensites. Acta Metall. 11(6), 511–527 (1963)

    Article  Google Scholar 

  8. S. Westman, Refinement of the γ-Cu9–Al4 structure. Acta Chem. Scand. 19, 1411–1419 (1965)

    Article  CAS  Google Scholar 

  9. S.W. Husain, M.S. Ahmed, I. Qamar, Dendritic morphology observed in the solid-state precipitation in binary alloys. Metall. Mater. Trans. A 30(6), 1529–1534 (1999)

    Article  Google Scholar 

  10. G.J. Arruda, A.T. Adorno, R. Magnani, C.R.S. Beatrice, Kinetics of eutectoid decomposition in Cu–Al and Cu–Al–Ag alloys. Mater. Lett. 32(2–3), 79–84 (1997)

    Article  CAS  Google Scholar 

  11. M.L. Castro, R. Romero, Isothermal decomposition of the Cu–22.72Al–3.55Be(at.%) alloy. Mater. Sci. Eng. A 287(1), 66–71 (2000)

  12. M.L. Castro, O. Fornaro, Formation of dendritic precipitates in the beta phase of Cu-based alloys. J. Mater. Sci. 44, 5829–5835 (2009)

    Article  CAS  Google Scholar 

  13. V.E.A. Araujo, R. Gastien, E. Zelaya, J.I. Beiroa, I. Corro, M. Sade, F.C. Lovey, Effects on the martensitic transformations and the microstructure of CuAlNi single crystals after ageing at 473 K. J. Alloys Compd. 641, 155–161 (2015)

    Article  CAS  Google Scholar 

  14. M.T. Ochoa-Lara, H. Flores-Zúñiga, D. Rios-Jara, Study of γ2 precipitation in Cu–Al–Be shape memory alloys. J. Mater. Sci. 41, 5455–5461 (2006)

    Article  CAS  Google Scholar 

  15. C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  CAS  Google Scholar 

  16. S.K. Vajpai, R.K. Dube, S. Sangal, Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility. Mater. Sci. Eng. A 570, 32–42 (2013)

    Article  CAS  Google Scholar 

  17. S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, H. Ebrahimnia Khaniki, A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng. A 556, 658–663 (2012)

    Article  CAS  Google Scholar 

  18. M.F. Giordana, N. Muñoz Vásquez, M.R. Esquivel, E. Zelaya, Analysis of the Cu–Al milling stages through the microstructure evolution studied by TEM and SEM. Metallogr. Microstruct. Anal. 6, 139–149 (2017)

    Article  CAS  Google Scholar 

  19. K. Chittineni, D.G. Bhat, X-ray diffraction investigation of the formation of nanostructured metastable phases during short-duration mechanical alloying of Cu–Al powder mixtures. Mater. Manuf. Processes 21(5), 527–533 (2006)

    Article  Google Scholar 

  20. S. Xi, J. Zhou, D. Zhang, X. Wang, Solid-state synthesis reaction between Al and Cu powders during ball milling. Mater. Lett. 26, 245–248 (1996)

    Article  CAS  Google Scholar 

  21. N.N. Sanchez Pascal, M.F. Giordana, F. Napolitano, M.R. Esquivel, E. Zelaya, Thermal stability analysis of Cu–11.8wt.%Al milled samples by TEM and HT-XRD. Adv. Powder Technol. 28(10), 2605–2612 (2017)

    Article  CAS  Google Scholar 

  22. B.E. Warren, B.L. Averbach, The effect of cold-work distortion on X ray patterns. J. Appl. Phys. 21, 595–599 (1950)

    Article  CAS  Google Scholar 

  23. B. Marinkovic, R. Riveiro de Avillez, A. Saavedra, F.C. Rizzo Assunçāo, A comparison between the Warren Averbach method and alternate methods for X-ray diffraction microstructure analysis of polycrystalline specimens. Mater. Res. 4(2), 71–76 (2001)

  24. S.A. Speakman, Estimating crystallite size using XRD. Lecture. http://prism.mit.edu/XRAY/oldsite/CrystalSizeAnalysis.pdf

  25. J. Kwarciak, Z. Bojajarski, H. Morawiec, Phase transformation in martensite of Cu–12.4%Al. J. Mater. Sci. 21, 788–792 (1986)

    Article  CAS  Google Scholar 

  26. M.F. Giordana, M.R. Esquivel, E. Zelaya, A detailed study of phase evolution in Cu–16at.%Al and Cu–30at.%Al alloys under different types of mechanical alloying processes. Adv. Powder Technol. 26(2), 470–477 (2015)

    Article  CAS  Google Scholar 

  27. X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Phase equilibria in the Cu–rich portion of the Cu–Al binary system. J. Alloys Compd. 264, 201–208 (1998)

    Article  CAS  Google Scholar 

  28. H. Cheniti, M. Bouabdallah, E. Patoor, High temperature decomposition of the β1 phase in a Cu–Al–Ni shape memory alloy. J. Alloys Compd. 476, 420–424 (2009)

    Article  CAS  Google Scholar 

  29. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Springer, Berlin, 1992)

    Book  Google Scholar 

  30. J. Rodriguez-Carvajal, Fullprof: a program for Rietveld refinement and pattern matching analysis, in Proceedings of Fifteenth Conference of the International Union of Crystallography, Toulouse, France, Vol. 127 (1990)

  31. J. Rodriguez-Carvajal, Recent developments of the program FULLPROF. Comm. Powder Diffr. (IUCr) 26, 12–19 (2001)

    Google Scholar 

  32. A. Guinier, D.L. Dexter, X-ray Studies of Materials (Interscience Publishers, Geneva, 1963)

    Google Scholar 

  33. M. De Graef, Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  34. M.M. Moshksar, H. Doty, R. Abbaschian, Grain growth in NiAl–Al2O3 in situ composites. Intermetallics 5, 393–399 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT: PICT-2015-1641), Comisión Nacional de Energía Atómica (CNEA) and Universidad Nacional del Comahue (UNCo: PI-B202-2017) for the financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Zelaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordana, M.F., Esquivel, M.R. & Zelaya, E. The Microstructure and the Phase Stability of a Cu–30at.%Al Alloy Obtained by Reactive Milling and Quenching. Metallogr. Microstruct. Anal. 9, 816–824 (2020). https://doi.org/10.1007/s13632-020-00694-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00694-7

Keywords

Navigation