Skip to main content
Log in

Experimental Investigation of Deformation and Spring-Back and Spring-Go Amounts of 1.5415 (16MO3) Sheet Material

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The spring-go and spring-back behavior of 16Mo3 sheet metal as a result of the V-deep bending process was examined. In the bending process, the effect of normalization and tempering heat treatment on 16Mo3 sheet metals was also microstructurally examined. The experimental study was performed in two stages. In the first stage, the effects of the thickness of the sheet metal on spring-go and spring-back behavior were inspected. Thus, 3-, 4-, 5-, and 6-mm-thick sheet metals to which unheated treatment was applied were subject to normalization and tempering, then bending processes were applied at a 150º bending angle in a punch tip radius of R 4.5 mm, and their spring-back and spring-go behaviors were examined. Secondly, the bending processes were applied. By removing small samples from the middle deformation area of the unheated treatment, normalization, and tempered sheet metals, their ferrite, pearlite, and martensite structures were microstructurally characterized, as a result of which, it was found that the material used in the heating process had a ferrite phase and pearlite structure, the normalization materials had fine pearlite structure and ferrite phase, and the annealed materials had a random and acicular martensite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. İriç, S. İriç, R. Kozan, Sac Şekillendirme Prosesinde Kullanılan Süzdürme Çubuğu Frenleme Kuvvetinin Modellenmesi. Sakarya Üniversitesi, Fen Bilimleri Enstitüsü Dergisi 17(2), 201–205 (2013)

    Article  Google Scholar 

  2. O. Anket, T. Koruvatan, İ. Ay, Sac Malzemelerin Şekillendirilmesinde Şekillendirme Sınır Diyagramlarının Kullanımı. Politeknik Dergisi 14(1), 39–47 (2011)

    Google Scholar 

  3. Ö. Tekaslan, N. Gerger, U. Şeker, V Bükme Kalıplarında Bakır Sac Malzemelerin Geri Esneme Miktarlarının Tespiti. Gazi Üniversitesi, Mühendislik Mimarlık Fakültesi Dergisi 23, 201–238 (2008)

    Google Scholar 

  4. Ö. Tekaslan, U. Seker, A. Özdemir, Determining spring back amount of steel sheet metal has 0.5 mm thickness in bending dies. Mater. Des. 27, 251–258 (2006)

    Article  CAS  Google Scholar 

  5. Ö. Tekaslan, N. Gerger, U. Şeker, Determination of spring-back of stainless steel sheet metal in V bending dies. Mater. Des. 29, 1043–1050 (2008)

    Article  CAS  Google Scholar 

  6. Z. Tekiner, An experimental study on the examination of spring back of sheet metals with several thicknesses and properties in bending dies. J. Mater. Process. Technol. 145, 109–117 (2004)

    Article  CAS  Google Scholar 

  7. D.K. Leu, A simplified approach for distinguishing between spring-back and spring-go in free U-die bending process of SPFC 440 sheets. Mater. Des. 94, 314–321 (2016)

    Article  CAS  Google Scholar 

  8. R. Zhang, L. Lang, R. Zafar, L. Lin, W. Zhang, Investigation into thinning and spring back of multilayer metal forming using hydro-mechanical deep drawing (HMDD) for lightweight parts. Int. J. Adv. Manuf. Technol. 82(5–8), 817–826 (2016)

    Article  Google Scholar 

  9. R. Ötü, H.I. Demirci, 60°’lik V Bükme kalıbında AA5754 ve AL1050 sac malzemelerin farklı bükme metotları kullanılarak geri esneme miktarlarının tespiti, International Iron and Steel Symposium (2012), pp. pp. 1006–1013.

  10. R. Ötü, H.İ. Demirci, Farklı Bükme Yöntemleri Uygulanarak V Bükme Kalıplarında AA 5754-O Sac Malzeme ile Elde Edilen Numunelerin Geri Esneme Miktarının Tespiti. Makine Teknolojileri Elektronik Dergisi 10(3), 27–42 (2013)

    Google Scholar 

  11. S. Toros, S. Kılıç, F. Öztürk, The effects of material thickness and deformation speed on spring back behavior of DP600 steel. Adv. Mater. Process. Technol. 264, 636–645 (2011)

    Google Scholar 

  12. F. Öztürk, S. Toros, S. Kılıç, Tensile and spring-back behavior of DP600 advanced high strength steel at warm temperatures. J. Iron Steel Res. Int. 16, 41–46 (2009)

    Article  Google Scholar 

  13. K. Imai, J. Koyama, Y. Jin, High-accuracy V-bending system by real time identifying material property. J. Mater. Process. Technol. 201(1–3), 193–197 (2008)

    Article  CAS  Google Scholar 

  14. H. Salvi, S. Mestry, T. Kavatkar, Experimental investigation for minimization of spring back in L bending using Taguchi design of experiments. Int. J. Innov. Res. Sci. Technol. 2(9), 35–42 (2016)

    Google Scholar 

  15. B. Li, Z. McClelland, S.J. Horstemeyer, I. Aslam, P.T. Wang, M.F. Horstemeyer, Time dependent springback of a magnesium alloy. Mater. Des. 66, 575–580 (2015)

    Article  CAS  Google Scholar 

  16. S.A. Abdullah, M.S. Buang, J. Saedon, H. Abdullah, Design parameters selection of springback effect in air-V bending using Taguchi approach on advance high strength steel-DP590. J. Teknol. 76(3), 69–73 (2015)

    Google Scholar 

  17. R. Bahloul, E.S. Ben, A. Potiron, Optimisation of spring back predicted by experimental and numerical approach by using response surface methodology. J. Mater. Process. Technol. 173, 101–110 (2006)

    Article  CAS  Google Scholar 

  18. K. Takada, K. Sato, N. Ma, Fracture prediction for automotive bodies using a ductile fracture criterion and a strain-dependent anisotropy model. SAE Int. J. Mater. Manuf. 8(3), 803–812 (2015)

    Article  Google Scholar 

  19. S.L. Zang, J. Liang, C. Guo, A constitutive model for spring-back prediction in which the change of Young’s modulus with plastic deformation is considered. Int. J. Mach. Tools Manuf. 47, 1791–1797 (2007)

    Article  Google Scholar 

  20. S.K. Panthi, N. Ramakrishnan, M. Ahmed, S.S. Singh, M.D. Goel, Finite element analysis of sheet metal bending process to predict the spring back. Mater. Des. 31, 657–662 (2010)

    Article  CAS  Google Scholar 

  21. S. Thipprakmas, S. Rojananan, Investigation of spring-go phenomenon using finite element method. Mater. Des. 29, 1526–1532 (2008)

    Article  CAS  Google Scholar 

  22. S. Thipprakmas, W. Phanitwong, Process parameter design of spring-back and spring-go in V-bending process using Taguchi technique. Mater. Des. 32, 4430–4436 (2011)

    Article  Google Scholar 

  23. S. Thipprakmas, Finite element analysis of punch height effect on V-bending angle. Mater. Des. 31, 1593–1598 (2010)

    Article  CAS  Google Scholar 

  24. S. Thipprakmas, Finite element analysis on the coined-bead mechanism during the V bending process. Mater. Des. 32, 4909–4917 (2011)

    Article  Google Scholar 

  25. W. Phanitwong, S. Thipprakmas, Determination of coined-bead geometry in the V-bending process. Adv. Mech. Eng. 2014, 1–10 (2014)

    Google Scholar 

  26. H. Dilipak, M. Ozdemir, M. Sarıkaya, Effects of material properties and punch tip radius on spring-forward in 90° V bending processes. J. Iron Steel Res. Int. 20, 64–69 (2013)

    CAS  Google Scholar 

  27. M. Ozdemir, H. Dilipak, S235JR (1.0038) Sac Malzemeye Uygulanan Isıl İşlemlerin İleri Esneme Miktarına Etkisinin Deneysel Olarak İncelenmesi, 3. Ulusal Talaşlı İmalat Sempozyumu, Turkey (2012), pp. 345–353

  28. J. Bakhshi, B. Rahmani, V. Daeezade, A. Gorji, The study of spring-back of CK67 steel sheet in V-die and U-die bending processes. Mater. Des. 30, 410–2419 (2009)

    Google Scholar 

  29. R. Shukla, V. Gautam, Experimental and numerical analysis of negative spring back in interstitial free (IF) steel. Int. J. Adv. Res. Innov. 2, 232–236 (2014)

    Google Scholar 

  30. K. Özdin, E. Büyük, F. Abdalov, H. Bayram, A. Çini, Investigation of spring-back and spring-go of AISI 400S sheet metal in V bending dies depending on bending angle and punch radius. Appl. Mech. Mater. 532, 549–553 (2013)

    Article  CAS  Google Scholar 

  31. M. Özdemir, H. Dilipak, H. Gökmeşe, V. Yılmaz, Farklı Isıl İşlemlerin 16Mo3 (1.5415) Sac Malzemenin İleri-Geri Esneme Miktarına Etkisinin Deneysel ve Mikroyapısal Olarak İncelenmesi. Uluslararasi Mühendislik ve Bilim Alaninda Yenilikçi Teknolojiler Sempozyumu, Karabük (2014), pp. 148–155.

  32. Y.X. Zhu, Y.L. Liu, H. Yang, H.P. Li, Development and application of the material constitutive model in spring back prediction of cold-bending. Mater. Des. 42, 245–258 (2012)

    Article  Google Scholar 

  33. V. Esat, H. Darendeliler, M.I. Gökler, Finite element analysis of spring back in bending of aluminium sheets. Mater. Des. 23, 223–229 (2002)

    Article  CAS  Google Scholar 

  34. Y.M. Huang, Finite element analysis on the V-die coining bend process of steel metal. Int. J. Adv. Manuf. Technol. 34, 287–294 (2007)

    Article  Google Scholar 

  35. M.H. Parsa, S.N. Ahkami, M. Ettehad, Experimental and finite element study on the spring back of double curved aluminum/polypropylene/aluminum sandwich sheet. Mater. Des. 31, 4174–4183 (2010)

    Article  CAS  Google Scholar 

  36. S. Huang, Y.X. Zhao, C.F. He, Shear fracture of advanced high strength steels. J. Iron Steel Res. Int. 21, 938–944 (2014)

    Article  Google Scholar 

  37. E.H. Ouakdi, R. Louahdi, D. Khirani, L. Tabourot, Evaluation of spring back under the effect of holding force and die radius in a stretch bending test. Mater. Des. 35, 106–112 (2012)

    Article  CAS  Google Scholar 

  38. B. Davoodi, D.B. Zareh, Assessment of forming parameters influencing spring-back in multi-point forming process: a comprehensive experimental and numerical study. Mater. Des. 59, 103–114 (2014)

    Article  CAS  Google Scholar 

  39. Y.H. Moon, S.S. Kang, J.R. Cho, T.G. Kim, Effect of tool temperature on the reduction of the spring back of aluminum sheets. J. Mater. Process. Technol. 132, 365–368 (2003)

    Article  CAS  Google Scholar 

  40. A. Mkaddem, D. Saidane, Experimental approach and RSM procedure on the examination of spring back in wiping-die bending processes. J. Mater. Process. Technol. 189, 325–333 (2007)

    Article  CAS  Google Scholar 

  41. V. Nasrollahi, B. Arezoo, Prediction of spring back in sheet metal components with holes on the bending area, using experiments, finite element and neural networks. Mater. Des. 36, 331–336 (2012)

    Article  CAS  Google Scholar 

  42. H. Baseri, J.M. Bakhshi, B. Rahmani, Modeling of spring-back in V-die bending process by using fuzzy learning back-propagation algorithm. Expert Syst. Appl. 38, 8894–8900 (2011)

    Article  Google Scholar 

  43. K.D. Kumar, K.K. Appukuttan, V.L. Neelakantha, P.S. Naik, Experimental determination of spring back and thinning effect of aluminum sheet metal during L-bending operation. Mater. Des. 56, 613–619 (2014)

    Article  CAS  Google Scholar 

  44. W.W. Chan, H.I. Chew, H.P. Lee, B.T. Cheok, Finite element analysis of spring-back of V-bending sheet metal forming processes. J. Mater. Process. Technol. 148, 15–24 (2004)

    Article  Google Scholar 

  45. G. Liu, Z. Lin, W. Xu, Y. Bao, Variable blank holder force in U-shaped part forming for eliminating spring back error. J. Mater. Process. Technol. 120, 259–264 (2008)

    Article  Google Scholar 

  46. Y.E. Ling, H.P. Lee, B.T. Cheok, Finite element analysis of spring back in L bending of sheet metal. J. Mater. Process. Technol. 168, 296–302 (2005)

    Article  Google Scholar 

  47. J. Wang, S. Verma, R. Alexander, J.T. Gau, Spring back control of sheet metal air bending process. J. Manuf. Process. 10, 21–27 (2008)

    Article  Google Scholar 

  48. S.A. Asgari, M. Pereira, B.F. Rolfe, M. Dingle, P.D. Hodgson, Statistical analysis of finite element modeling in sheet metal forming and spring back analysis. J. Mater. Process. Technol. 203, 129–136 (2008)

    Article  CAS  Google Scholar 

  49. D. Fei, P. Hodgson, Experimental and numerical studies of spring back in air V-bending process for cold rolled TRIP steels. Nucl. Eng. Des. 236, 1847–1851 (2006)

    Article  CAS  Google Scholar 

  50. B. Grizelj, J. Cumin, D. Grizelj, Effect of spring-back and spring-forward in V-die bending of St1403 sheet metal plates. Strojarstvo 52(2), 181–186 (2010)

    Google Scholar 

  51. T. Kartik, R. Rajesh, Effect of punch radius and sheet thickness on spring-back in V-die bending. Adv. Nat. Appl. Sci. 11(8), 178–184 (2017)

    CAS  Google Scholar 

  52. Y. Aslan, İ. Karaağaç, V Bükmede Geri Esneme Davranışları. Gazi Üniversitesi Fen Bilimleri Dergisi Part:C, Tasarım ve Teknoloji 2(3), 255–263 (2014)

    Google Scholar 

  53. S. Kılıç, Experimental and numerical investigation of the effect of different temperature and deformation speeds on mechanical properties and springback behaviour in Al-Zn-Mg-Cu alloy. Mechanics 25(5), 406–412 (2019)

    Article  Google Scholar 

  54. M. Özdemir, H. Gökmeşe, H. Dilipak, V. Yılmaz, Characterization of microstructure and bending response of sheet material: influence of thickness. J. Adv. Mater. Process. 3(1), 3–14 (2015)

    Google Scholar 

  55. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin, The effect of inter critical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets. Mater. Sci. Eng. A 518, 1–6 (2009)

    Article  CAS  Google Scholar 

  56. W. Hosford, R.M. Caddell, Metal Forming, 3rd edn. (Cambridge University Press, Cambridge, 2007), pp. 17–40

    Book  Google Scholar 

  57. C.S. Barret, Metallurgy and Metallurgical Engineering Series, 2nd edn. (Mcgraw-Hill, London, 1952), pp. 442–460

    Google Scholar 

  58. G. Krauss, Steel; Heat Treatment and Processing Principles (Materials Park, Ohio, 1997), pp. 80–300

    Google Scholar 

  59. İ.İ. Novikov, Metallerin Isıl İşlem Teorisi (çev. Galip Said). Ankara, Nobel Yayıncılık(2012), pp.20–264

  60. H.K. Yi, D.W. Kim, C.J. Van Tyne, Y.H. Moon, Analytical prediction of spring back based on residual differential strain during sheet metal bending. J. Mech. Eng. Sci. 222, 117–129 (2008)

    Article  Google Scholar 

  61. H. Livatyalı, T. Altan, Prediction and elimination of spring back in straight flanging using computer aided design methods Part 1: experimental investigations. J. Mater. Process. Technol. 117, 262–268 (2001)

    Article  Google Scholar 

  62. W. Hu, L.G. Yao, Z.Z. Hua, Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method. J. Mater. Process. Technol. 197, 77–88 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Özdemir.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, M., Dilipak, H. & Bostan, B. Experimental Investigation of Deformation and Spring-Back and Spring-Go Amounts of 1.5415 (16MO3) Sheet Material. Metallogr. Microstruct. Anal. 9, 796–806 (2020). https://doi.org/10.1007/s13632-020-00687-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00687-6

Keywords

Navigation