Skip to main content
Log in

Fractal Correlation Dimensions Analysis of Al–Si Dendrites

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Solidification dendrites in metal alloys have intricate shapes with fractal elements, making fractal dimension an attractive potential method for more completely quantifying these important shapes. However, fractal analysis as usually applied to dendrites has some pitfalls, which we demonstrate here on micrographs of dendrites from two different aluminum–silicon alloys with different solidification velocities. Box dimension and a more rigorous analysis of correlation dimension were calculated for each sample, but both measures exhibited non-uniform scaling. Further analysis using the Takens–Theiler estimator of correlation dimension revealed a transition between two distinct scaling regimes: a small-scale exponent associated with dendrite boundary texture and the large-scale with overall dendrite morphology. The scaling transition between regimes may prove useful as an automated alternative to secondary dendrite arm spacing. Overall, the investigations give further insight into the quantitative description of complex dendritic structures and clarify the ability of fractal analysis to describe this important solidification morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U. Bisang, J.H. Bilgram, The fractal dimension of xenon dendrites. J. Cryst. Growth 166(1–4), 207–211 (1996). https://doi.org/10.1016/0022-0248(96)00049-8

    Article  CAS  Google Scholar 

  2. K. Ohsasa, Evaluation of dendritic morphology using fractal dimension and dimensionless perimeter in unidirectionally solidified Al–Si alloys. IOP Conf. Ser. Mater. Sci. Eng. 1, 12–33 (2015)

    Google Scholar 

  3. A.L. Genau, A.C. Freedman, L. Ratke, Effect of solidification conditions on fractal dimension of dendrites. J. Cryst. Growth 363, 49–54 (2013). https://doi.org/10.1016/j.jcrysgro.2012.09.044

    Article  CAS  Google Scholar 

  4. Y. Couder, F. Argoul, A. Arneodo, J. Maurer, M. Rabaud, Statistical properties of fractal dendrites and anisotropic diffusion-limited aggregates. Phys. Rev. A 42(6), 3499 (1990)

    Article  CAS  Google Scholar 

  5. C. Dominkovics, G. Harsanyi, Dendrite material identification method using fractal analysis, in 33rd International Spring Seminar on Electronics Technology, ISSE 2010 (2010)

  6. B. Mandelbrot, How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156(3775), 636–638 (1967)

    Article  CAS  Google Scholar 

  7. F. Takens, On the numerical determination of the dimension of an attractor, in Dynamical Systems and Bifurcations, ed. by B. Braaksma, H. Braer, F. Takens (Springer, New York, 1985), pp. 99–106

    Chapter  Google Scholar 

  8. J. Theiler, Estimating fractal dimension. J. Opt. Soc. Am. A 7(6), 1055 (1990). https://doi.org/10.1364/josaa.7.001055

    Article  Google Scholar 

  9. G. Gonzato, F. Mulargia, W. Marzocchi, Practical application of fractal analysis: problems and solutions. Geophys. J. Int. 132(2), 275–282 (1998). https://doi.org/10.1046/j.1365-246x.1998.00461.x

    Article  Google Scholar 

  10. B.J. West, Nature’s Patterns and the Fractional Calculus, 2nd edn. (De Gruyter, Berlin, 2017)

    Book  Google Scholar 

  11. J. Alkemper, S. Sous, C. Stöcker, L. Ratke, Directional solidification in an aerogel furnace with high resolution optical temperature measurements. J. Cryst. Growth 191, 252–260 (1998). https://doi.org/10.1016/S0022-0248(98)00114-6

    Article  CAS  Google Scholar 

  12. N. Otsu, A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  13. T. MathWorks, MATLAB and Image Processing Toolbox. Release 2016b, Natick, MA, USA

  14. M.C. Flemings, T.Z. Kattamis, B.P. Bardes, Dendrite arm spacing in aluminium alloys. Trans. Am. Foundry Soc. 99, 501–506 (1991)

    CAS  Google Scholar 

  15. D. Bouchard, J.S. Kirkaldy, Prediction of dendrite arm spacings in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metall. Mater. Trans. B 28(4), 1997 (1997). https://doi.org/10.1007/s11663-997-0039-x

    Article  Google Scholar 

  16. T. Okamoto, K. Kishitake, Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys. J. Cryst. Growth 29(2), 137–146 (1975). https://doi.org/10.1016/0022-0248(75)90217-1

    Article  CAS  Google Scholar 

  17. M.D. Peres, C.A. Siqueira, A. Garcia, Macrostructural and microstructural development in Al–Si alloys directionally solidified under unsteady-state conditions. J. Alloys Compd. 381, 168–181 (2004). https://doi.org/10.1016/j.jallcom.2004.03.107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Al–Si samples were originally created by Sonja Steinbach and Lorenz Ratke in the Institute for Materials Physics in Space at German Aerospace Centre (DLR) in Cologne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Genau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warriner, W.E., Friess, J. & Genau, A. Fractal Correlation Dimensions Analysis of Al–Si Dendrites. Metallogr. Microstruct. Anal. 9, 561–569 (2020). https://doi.org/10.1007/s13632-020-00672-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00672-z

Keywords

Navigation