Skip to main content

Advertisement

Log in

Corrosion Behavior of a Laser Surface-Treated Alpha–Beta 6/4 Titanium Alloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Laser surface treatment of Ti–6Al–4V alloy was carried out by means of a Q-switched Nd:YAG laser. Different laser exposure times were attempted aiming to get the optimal conditions for promising mechanical and electrochemical properties. The microstructure was examined using scanning electron microscopy attached with energy dispersive spectrometer for chemical composition analysis, and the electrochemical behavior of the treated samples was tested by means of polarization test. The corrosion resistance was investigated in Ringer´s solution. The results were compared with those obtained from untreated alloys tested in same conditions. Laser treatment produced a transformed layer with acicular martensite α′-Ti as a result of the recrystallization of the fully lamellar α + β microstructure of the substrate. The results indicate that ultra-short pulses (in nanosecond scale) from Nd:YAG laser effectively enhanced the corrosion resistance of this alloy in acidic media (Ringer’ s solution). A notable enhancement of hardness was reached as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Biswas, L. Li, U.K. Chatterjee, I. Manna, S.K. Pabi, J. Dutta Majumdar, Mechanical and electrochemical properties of laser surface nitrided Ti–6Al–4V. Scr. Mater. 59, 239–242 (2008). https://doi.org/10.1016/j.scriptamat.2008.03.020

    Article  CAS  Google Scholar 

  2. D. Mareci, C. Bocanu, G. Nemtoi, D. Aelenei, Electrochemical behaviour of titanium alloys in artificial saliva. J. Serb. Chem. Soc. 70, 891–897 (2005). https://doi.org/10.2298/JSC0506891M

    Article  CAS  Google Scholar 

  3. F.E.T. Heakal, K.A. Awad, Electrochemical corrosion and passivation behavior of titanium and its Ti–6Al–4V alloy in low and highly concentrated HBr solutions. Int. J. Electrochem. Sci. 6, 6483–6502 (2011)

    Google Scholar 

  4. L.O. Berbel, E. Banczek, P. Do, I.K. Karousis, G.A. Kotsakis, I. Costa, Determinants of corrosion resistance of Ti–6Al–4V alloy dental implants in an In Vitro model of peri-implant inflammation. PLoS ONE 14, 1–17 (2019). https://doi.org/10.1371/journal.pone.0210530

    Article  CAS  Google Scholar 

  5. S. Sathish, V. Anbarasan, M. Geetha, R. Asokamani, Corrosion resistance of laser nitrided commercially pure titanium and Ti–13Nb–13Zr biomedical alloys. Trans. Indian Inst. Met. 61, 235–238 (2008). https://doi.org/10.1007/s12666-008-0019-0

    Article  CAS  Google Scholar 

  6. R.S. Razavi, M. Salehi, M. Ramazani, H.C. Man, Corrosion behaviour of laser gas nitrided Ti–6Al–4V in HCl solution. Corros. Sci. 51, 2324–2329 (2009). https://doi.org/10.1016/j.corsci.2009.06.016

    Article  CAS  Google Scholar 

  7. Soediono, B. Titanium: Physical Metallurgy Processing and Application; 1989; vol. 53. ISBN 9788578110796

  8. M. Karthega, N. Rajendran, Formation of nanoporous oxide layer over a binary β-phase titanium in simulated body fluid. J. Porous Mater. 19, 573–577 (2012). https://doi.org/10.1007/s10934-011-9507-4

    Article  CAS  Google Scholar 

  9. M. Dewidar, Improvement of hardness and wear resistance of Ti–6Al–4V alloy by thermal oxidation for biomedical application. J. Eng. Sci. 34, 1941–1951 (2006)

    Google Scholar 

  10. N. Zaveri, M. Mahapatra, A. Deceuster, Y. Peng, L. Li, A. Zhou, Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids. Electrochim. Acta 53, 5022–5032 (2008). https://doi.org/10.1016/j.electacta.2008.01.086

    Article  CAS  Google Scholar 

  11. N. Dai, L.C. Zhang, J. Zhang, Q. Chen, M. Wu, Corrosion behavior of selective laser melted Ti–6Al–4V alloy in NaCl solution. Corros. Sci. 102, 484–489 (2016). https://doi.org/10.1016/j.corsci.2015.10.041

    Article  CAS  Google Scholar 

  12. S.R. Al-Sayed, A.A. Hussein, A.A. Nofal, S.I. Hassab Elnaby, H. Elgazzar, Characterization of a laser surface-treated martensitic stainless steel. Materials (Basel) 10, 595 (2017). https://doi.org/10.3390/ma10060595

    Article  CAS  Google Scholar 

  13. S.R. Al-Sayed Ali, A.H.A. Hussein, A. Nofal, S.I. Hassab Elnaby, H. Elgazzar, A contribution to laser cladding of Ti–6Al–4V titanium alloy. Metall. Res. Technol. (2019). https://doi.org/10.1051/metal/2019060

    Article  Google Scholar 

  14. R.S. Razavi, G.R. Gordani, H.C. Man, Corrosion behavior of laser nitrided Ti–6Al–4V alloy: a review. Defect Diffus. Forum 312–315, 376–380 (2011). https://doi.org/10.4028/www.scientific.net/DDF.312-315.376

    Article  CAS  Google Scholar 

  15. M. Khaled, B.S. Yilbas, J. Shirokoff, Electrochemical study of laser nitrided and PVD TiN coated Ti–6Al–4V alloy: the observation of selective dissolution. Surf. Coat. Technol. 148, 46–54 (2001). https://doi.org/10.1016/S0257-8972(01)01326-3

    Article  CAS  Google Scholar 

  16. P. Jiang, X.L. He, X.X. Li, L.G. Yu, H.M. Wang, Wear resistance of a laser surface alloyed Ti–6Al–4V alloy. Surf. Coat. Technol. 130, 24–28 (2000). https://doi.org/10.1016/S0257-8972(00)00680-0

    Article  CAS  Google Scholar 

  17. C. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, H. Zhou, Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature. Surf. Coat. Technol. 205, 2142–2151 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.125

    Article  CAS  Google Scholar 

  18. M. Alhammad, S. Esmaeili, E. Toyserkani, Surface modification of Ti–6Al–4V alloy using laser-assisted deposition of a Ti-Si compound. Surf. Coat. Technol. 203, 1–8 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.160

    Article  CAS  Google Scholar 

  19. S. Al-Sayed Ali, A. Hussein, A. Nofal, S. Hasseb Elnaby, H. Elgazzar, H. Sabour, Laser powder cladding of Ti–6Al–4V α/β alloy. Materials (Basel) 10, 1178 (2017). https://doi.org/10.3390/ma10101178

    Article  CAS  Google Scholar 

  20. R. Singh, A. Kurella, N.B. Dahotre, Laser surface modification of Ti–6Al–4V: wear and corrosion characterization in simulated biofluid. J. Biomater. Appl. 21, 49–73 (2006). https://doi.org/10.1177/0885328206055998

    Article  CAS  Google Scholar 

  21. T.M. Yue, T.M. Cheung, H.C. Man, The effects of laser surface treatment on the corrosion properties of Ti–6Al–4V alloy in Hank’s solution. J. Mater. Sci. Lett. 19, 205–208 (2000)

    Article  CAS  Google Scholar 

  22. R. Singh, M. Martin, N.B. Dahotre, Influence of laser surface modification on corrosion behavior of stainless steel 316L and Ti–6Al–4V in simulated biofluid. Surf. Eng. 21, 297–306 (2005). https://doi.org/10.1179/174329405X55320

    Article  CAS  Google Scholar 

  23. M.R. Amaya-Vazquez, J.M. Sánchez-Amaya, Z. Boukha, F.J. Botana, Microstructure, microhardness and corrosion resistance of remelted TiG2 and Ti6Al4V by a high power diode laser. Corros. Sci. 56, 36–48 (2012). https://doi.org/10.1016/j.corsci.2011.11.006

    Article  CAS  Google Scholar 

  24. Z. Sun, I. Annergren, D. Pan, T.A. Mai, Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Mater. Sci. Eng. A 345, 293–300 (2003). https://doi.org/10.1016/S0921-5093(02)00477-X

    Article  Google Scholar 

  25. T. Yue, J. Yu, Z. Mei, H. Man, Excimer laser surface treatment of Ti–6Al–4V alloy for corrosion resistance enhancement. Mater. Lett. 52, 206–212 (2002). https://doi.org/10.1016/S0167-577X(01)00395-0

    Article  CAS  Google Scholar 

  26. Minilite Pulsed Nd:YAG Laser—Photonic Solutions, UK. https://www.photonicsolutions.co.uk/product-detail.php?prod=6034. Accessed 1 Feb 2020

  27. F. Karimzadeh, M. Heidarbeigy, A. Saatchi, Effect of heat treatment on corrosion behavior of Ti–6Al–4V alloy weldments. J. Mater. Process. Technol. 206, 388–394 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.065

    Article  CAS  Google Scholar 

  28. D.D. Giatmana, J. Affi, S. Fonna, M. Niinomi, M. Nakai, Corrosion resistance of new beta type titanium alloy, Ti-29Nb-13Ta-4.6Zr in artificial saliva solution. IOP Conf. Ser. Mater. Sci. Eng. (2018). https://doi.org/10.1088/1757-899x/352/1/012008

    Article  Google Scholar 

  29. Astm Standard Practice for Calculation of Corrosion Rates and Related Information. In Astm G 102; 1999; Vol. 89, pp. 1–7

  30. D.R. Tobergte, S. Curtis, Microstructure and Texture in Steels and other Materials, Vol. 53. Springer, Berlin 2008. ISBN 9788578110796

  31. N.V. Ferdinandov, D.D Gospodinov, M.D. Ilieva, R.H. Radev, Structure and pitting corrosion of Ti–6Al–4V alloy and Ti–6Al–4V welds. 2018, 325–330. https://doi.org/10.24264/icams-2018.vi.7

  32. D. Song, A. Ma, Jiang J. Lin, D. Yang, Corrosion behavior of ultra-fine grained industrial pure Al fabricated by ECAP. Trans. Nonferrous Met. Soc. China (English Ed.) 19, 1065–1070 (2009). https://doi.org/10.1016/s1003-6326(08)60407-0

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledgment the cooperation of Assoc. Prof. Salah Ibrahim Hassab Elnaby who facilitated doing the laser surface treatment experiments at the Engineering Applications of Lasers department—National Institute of Laser Enhanced Sciences—Cairo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samar Reda Al-Sayed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sayed, S.R., Abdelfatah, A. Corrosion Behavior of a Laser Surface-Treated Alpha–Beta 6/4 Titanium Alloy. Metallogr. Microstruct. Anal. 9, 553–560 (2020). https://doi.org/10.1007/s13632-020-00667-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00667-w

Keywords

Navigation