Skip to main content
Log in

Evolution of the Microstructure of Intermetallic Compounds Formed on Mild Steel During Hot Dipping in Molten Aluminum Alloy Baths

  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Hot-dip aluminum coating technique has been applied to improve the high-temperature oxidation resistance of steels. This method is adopted widely due to the low cost and good performance. The purpose of this paper is to study the formation of intermetallic layers during the hot dipping of mild steel into a molten aluminum bath. Mild steel specimens were immersed into molten aluminum alloy baths at 750 °C for 1 h, 2 h and 3 h. Intermetallic compounds were analyzed by optical microscope, scanning electron microscope coupled with energy-dispersive spectroscopy and X-ray diffraction analysis. This study was completed by microhardness testing. The results showed that the hot-dip aluminized layer was divided into an outer pure aluminum or aluminum–silicon topcoat and an intermetallic layer. In the bath of pure aluminum, the intermetallic layer was the thickest and consisted of an outer FeAl3 layer and an inner Fe2Al5 layer adjacent to the steel substrate with tongue-/finger-like morphology, while in the Al–Si alloy bath, the thickness of the intermetallic layer decreased substantially and the interface intermetallic/steel substrate becomes flat. The ternary phases Al8Fe2Si and Fe3Al2Si3 are identified in addition to FeAl3 and Fe2Al5. The microhardness testing recorded high values of the intermetallic layers, up to 800Hv01, which confirms the high brittleness of the intermetallic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.N. Chang, F.I. Wei, High-temperature oxidation of low alloy steels. J. Mater. Sci. 24, 14–22 (1989)

    Article  CAS  Google Scholar 

  2. B. Schmid, N. Aas, Q. Grong, R. Qdegard, High-temperature oxidation of iron and the decay of wüstite studied with in situ ESEM. J. Oxid. Met. 57, 116 (2002)

    Article  Google Scholar 

  3. S. Kobayashi, T. Yakou, Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. J. Mater. Sci. Eng. A 338, 44–53 (2002)

    Article  Google Scholar 

  4. Y.Y. Chang, C.C. Tsaur, J.C. Rock, Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high-temperature oxidation. J. Surf. Coat. Technol. 200, 6588–6593 (2006)

    Article  CAS  Google Scholar 

  5. C.J. Wang, S.M. Chen, The high-temperature oxidation behavior of hot-dipping Al-Si coating on low carbon steel. J. Surf. Coat. Technol. 200, 6601–6605 (2006)

    Article  CAS  Google Scholar 

  6. H. Glasbrenner, H.U. Borgstedt, Preparation and characterization of Al203/FexA1y layers on MANET steel. J. Nucl. Mater. 212–215, 1561–1565 (1994)

    Article  Google Scholar 

  7. E. Serra, H. Glasbrenner, A. Perujo, Hot-dip aluminum deposit as a permeation barrier for MANET steel. J. Fusion. Eng. Des. 41, 149–155 (1998)

    Article  CAS  Google Scholar 

  8. Y. Kitajima, S. Hayashi, T. Nishimoto, T. Narita, S. Ukai, Rapid Formation of α-Al2O3 Scale on an Fe-Al Alloy by pure-metal coatings at 900°C. J. Oxid. Met. 73, 375–388 (2010)

    Article  CAS  Google Scholar 

  9. D. Wang, Z. Shi, Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel. J. Appl. Surf. Sci. 227, 255–260 (2004)

    Article  CAS  Google Scholar 

  10. W. Deqing, Phase evolution of an aluminized steel by oxidation treatment. J. Appl. Surf. Sci. 254, 3026–3032 (2008)

    Article  Google Scholar 

  11. W.J. Cheng, Y.Y. Chang, C.J. Wang, Observation of high-temperature phase transformation in the aluminide Cr–Mo steel using EBSD. J. Surf. Coat. Technol. 203, 401–406 (2008)

    Article  CAS  Google Scholar 

  12. R.W. Richards, R.D. Jones, P.D. Clements, H. Clarke, Metallurgy of continuous hot-dip aluminizing. J. Int. Mater. Rev. 39, 191–212 (1994)

    Article  CAS  Google Scholar 

  13. K. Bouché, F. Barbier, A. Coulet, Intermetallic compound layer growth between solid iron and molten aluminum. J. Mater. Sci. Eng. A 249, 167–175 (1998)

    Article  Google Scholar 

  14. A. Bahadur, O.N. Mohanty, Structural studies of hot-dip aluminized coatings on mild steel. J. Mater. Trans. JIM 32, 1053–1061 (1991)

    Article  CAS  Google Scholar 

  15. S. Mendil, K. Taibi, S. Azem, N. Harb, Growth of intermetallic phases during interdiffusion between steel and aluminum, in: 3ème Conférence Internationale sur le Soudage, le CND et l’Industrie des Matériaux et Alliages (IC-WNDT-MI’12), 26–28 Novembre 2012, Oran, Algerie

  16. S. Mendil, S. Azem, K. Taibi, Identification of Fe-Al intermetallic phases in aluminide coatings on mild steel, in: 5th International Conference on Welding, Non-Destructive Testing and Materials and Alloys Industry (IC-WNDT-MI’16), November 26˗28th, 2016, Oran, Algeria

  17. I.I. Danzo, Y. Houbaert, K. Verbeken, Diffusion driven columnar grain growth induced in an Al-Si-coated steel substrate. J. Surf. Coat. Technol. 251, 15–20 (2014)

    Article  CAS  Google Scholar 

  18. W.J. Cheng, C.J. Wang, Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel. J. Intermet. 19, 1455–1460 (2011)

    Article  CAS  Google Scholar 

  19. F.M. Robert, Metals handbook, vol. 5 (American Society of Metals, Materials Park, 1983)

    Google Scholar 

  20. W.J. Cheng, C.J. Wang, Growth of intermetallic layer in the aluminide mild steel during hot-dipping. J. Surf. Coat. Technol. 204, 824–828 (2009)

    Article  CAS  Google Scholar 

  21. U.R. Kattner, B.P. Burton, Phase Diagrams of Binary Iron Alloys (ASM International, Materials Park, Ohio, 1993)

    Google Scholar 

  22. G. Haiyan, H. Yuehui, S. Peizhi, Z. Jin, X. Nanping, J. Yao, H. Baiyun, C.T. Liu, Porous FeAl intermetallics fabricated by elemental powder reactive synthesis. J. Intermet. 17, 1041–1046 (2009)

    Article  Google Scholar 

  23. T. Maitra, S.P. Gupta, Intermetallic compound formation in Fe-Al-Si ternary system. J. Mater. Charact. 49, 293–311 (2003)

    Article  Google Scholar 

  24. G. Eggeler, W. Auer, H. Kaesche, On the influence of silicon on the growth of the alloy layer during hot-dip aluminizing. J. Mater. Sci. 21, 3348–3350 (1986)

    Article  CAS  Google Scholar 

  25. W.J. Cheng, C.J. Wang, Microstructural evolution of intermetallic layer in hot-dipped aluminide mild steel with silicon addition. J. Surf. Coat. Technol. 205, 4726–4731 (2011)

    Article  CAS  Google Scholar 

  26. T. Heumann, S. Dittrich, Über die Kinetik der Reaktion von festem und flüssigem Aluminium mit Eisen. J. Z Metallkd. 50, 617–625 (1959)

    CAS  Google Scholar 

  27. B. Lemmens, H. Springer, M.J. Duarte, I. De Graeve, J. De Strycker, D. Raabe, K. Verbeken, Atom probe tomography of intermetallic phases and interfaces formed in dissimilar joining between Al alloys and steel. J. Mater. Charact. 120, 268–272 (2016)

    Article  CAS  Google Scholar 

  28. B. Lemmens, H. Springer, I. De Graeve, J. De Strycker, D. Raabe, K. Verbeken, Effect of silicon on the microstructure and growth kinetics of intermetallic phases formed during hot-dip aluminizing of ferritic steel. J. Surf. Coat. Technol. 319, 104–109 (2017)

    Article  CAS  Google Scholar 

  29. F. Bosselet, D. Pontevichi, M. Sacerdote-Peronnet, J.C. Viala, Measurement of the isothermal section at 1000 K of Al-Fe-Si. J. Phys IV France 122, 41–46 (2004)

    Article  CAS  Google Scholar 

  30. H. Tanihata, T. Sugawara, K. Matsuda, S. Ikeno, Effect of casting and homogenizing treatment conditions on the formation of Al-Fe-Si intermetallic compounds in 6063 Al-Mg-Si alloys. J. Mater. Sci. 34, 1205–1210 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Kab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kab, M., Mendil, S. & Taibi, K. Evolution of the Microstructure of Intermetallic Compounds Formed on Mild Steel During Hot Dipping in Molten Aluminum Alloy Baths. Metallogr. Microstruct. Anal. 9, 476–483 (2020). https://doi.org/10.1007/s13632-020-00656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00656-z

Keywords

Navigation