Skip to main content
Log in

The Formation of Iron-Containing Intermetallic Phases in Al–12%Si Alloy by Using Tungsten Addition

  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The use of silumins as construction materials in mechanical and aircraft engineering is often limited due to the presence of large crystals of intermetallic phases of the Al–Si–Fe and Al–Si–Fe–Mn systems in their structure. This paper shows the formation of iron-containing intermetallic phases in Al–12%Si by using tungsten addition in amount 0.01–0.5 mass%. It has been found that introduction of 0.01 mass% W leads to the transition of the needle-shaped β-phase into the α-phase having more compact blocky form and polyhedral crystals, with a decrease in the dimensions of the α-phase by more than 2 times. The addition in amount of 0.05, 0.1, and 0.5 mass% W leads to the decrease in the dimensions of α- and β-phases by an average of 1.5 times. The change in the formation of iron-containing intermetallic phases in Al–12%Si alloy after the tungsten addition leads to an increase in mechanical properties by an average of 20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Seifeddine, S. Johansson, I.L. Svensson, The influence of cooling rate and manganese content on the β-Al5FeSi phase formation and mechanical properties of Al–Si-based alloys. J. Mater. Sci. Eng. (2008). https://doi.org/10.1016/j.msea.2008.01.056

    Article  Google Scholar 

  2. Y. Rao, H. Yan, Zh Hu, Modification of eutectic silicon and β-Al5FeSi phases in as-cast ADC12 alloys by using samarium addition. J. Rare Earths. (2013). https://doi.org/10.1016/S1002-0721(12)60379-2

    Article  Google Scholar 

  3. E. Cinkilic, C.D. Ridgeway, X. Yan et al., A formation map of iron-containing intermetallic phases in recycled cast aluminum alloys. Metall. Mater. Trans. A (2019). https://doi.org/10.1007/s11661-019-05469-6

    Article  Google Scholar 

  4. S.G. Irizalp, N. Saklakoglu, Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Eng. Sci. Technol. Int. J. (2014). https://doi.org/10.1016/j.jestch.2014.03.006

    Article  Google Scholar 

  5. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Alcoa Technical Center, Alcoa Center, 2007)

    Book  Google Scholar 

  6. E. Witthaya, Modification of β-Al5FeSi compound in recycled Al–Si–Fe cast alloy by using Sr, Mg and Cr additions. J. Mater. Sci. Technol. 24(1), 45–47 (2008)

    Article  Google Scholar 

  7. Q. Li, Y. Zhu, Sh Zhao, Y. Lan, D. Liu, G. Jian, Q. Zhang, Y. Zhou, Influences of Fe, Mn and Y additions on microstructure and mechanical properties of hypoeutectic Al–7%Si alloy. Intermetallics (2020). https://doi.org/10.1016/j.intermet.2020.106768

    Article  Google Scholar 

  8. K. Chanyathunyaroj, U. Patakham, S. Kou, C. Limmaneevichitr, Microstructural evolution of iron-rich intermetallic compounds in scandium modified Al–7Si–0.3Mg alloys. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.09.132

    Article  Google Scholar 

  9. M. Ravi, U.T.S. Pillai, B.C. Pai, A.D. Damodaran, E.S. Dwarakadasa, The effect of mischmetal addition on the structure and mechanical properties of a cast Al–7-Si–0.3Mg alloy containing excess iron (up to 0.6 Pct). Metall. Mater. Trans. Phys. Metall. Mater. Sci. (2002). https://doi.org/10.1007/s11661-002-0100-y

    Article  Google Scholar 

  10. M.A. Moustafa, Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys. J. Mater. Process. Technol. (2009). https://doi.org/10.1016/j.jmatprotec.2008.02.073

    Article  Google Scholar 

  11. A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, Influence of additives on the microstructure and tensile properties of near-eutectic Al–108%Si cast alloy. Mater. Des. (2009). https://doi.org/10.1016/j.matdes.2009.05.042

    Article  Google Scholar 

  12. A.P. Hekimoğlu, M. Çalış, G. Ayata, Efect of strontium and magnesium additions on the microstructure and mechanical properties of Al–12Si alloys. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00429-6

    Article  Google Scholar 

  13. Q. Wang, Q. Hao, W. Yu, Effect of strontium modification on porosity formation in A356 alloy. Int. Metalcast. (2019). https://doi.org/10.1007/s40962-018-00300-1

    Article  Google Scholar 

  14. H. Xin, Y. Hong, Effect of trace La addition on the microstructure and mechanical property of as-cast ADC12 Al-Alloy. J. Wuhan Univ. Technol.-Mater. Sci. Ed. (2013). https://doi.org/10.1007/s11595-013-0665-x

    Article  Google Scholar 

  15. W. Jiang, Z. Fan, Y. Dai, C. Li, Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy. Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2014.01.009

    Article  Google Scholar 

  16. R.A. Karnesky, M.E. Dalen, D.C. Dunand, D.N. Seidman, Effects of substituting rare-earth elements for scandium in a precipitation-strengthened Al–0.08 at.%Sc alloy. Scr. Mater. (2006). https://doi.org/10.1016/j.scriptamat.2006.05.021

    Article  Google Scholar 

  17. J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, P. Schumacher, Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. (2015). https://doi.org/10.1016/j.actamat.2014.10.064

    Article  Google Scholar 

  18. G. Niu, J. Mao, J. Wang, Effect of Ce addition on fluidity of casting aluminum alloy A356. J. Metall. Mater. Trans. A (2019). https://doi.org/10.1007/s11661-019-05458-9

    Article  Google Scholar 

  19. X. Hu, F. Jiang, F. Ai, Y. Yan, Effects of rare earth Er additions on microstructure development and mechanical properties of die-cast ADC12 aluminum alloy. J. Alloys Compd. (2012). https://doi.org/10.1016/j.jallcom.2012.05.089

    Article  Google Scholar 

  20. T. Wirtz, G. Lütjering, A. Gysler, D. Lenczowski, R. Rauh, Fatigue properties of the aluminium alloys 6013 and Al–Mg–Sc. Mater. Sci. Forum (2000). https://doi.org/10.4028/www.scientific.net/msf.331-337.1489

    Article  Google Scholar 

  21. Z. Shi, Q. Wang, Y. Shi, G. Zhao, R. Zhang, Microstructure and mechanical properties of Gd-modified A356 aluminum alloys. J. Rare Earths (2015). https://doi.org/10.1016/S1002-0721(14)60518-4

    Article  Google Scholar 

  22. A. Zykova, N. Martyushev, V. Skeeba, D. Zadkov, A. Kuzkin, Influence of W addition on microstructure and mechanical properties of Al–12%Si alloys. Materials (2019). https://doi.org/10.3390/ma12060981

    Article  Google Scholar 

  23. A.P. Zykova, A.V. Chumaevskii, N.V. Martyushev, Effect of nanosize tungsten powder on the microstructure and mechanical properties of silumins. Met. Sci. Heat Treat. (2019). https://doi.org/10.1007/s11041-019-00404-3

    Article  Google Scholar 

  24. N.V. Martyushev, V.S. Bashev, A.P. Zykova, Influence of soaking time of modifier in melt on microstructure of Al–12%Si alloys. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/177/1/012118

    Article  Google Scholar 

  25. C.M. Dinnis, J.A. Taylor, A.K. Dahle, As-cast morphology of iron-intermetallics in Al–Si foundry alloys. Scr. Mater. (2005). https://doi.org/10.1016/j.scriptamat.2005.06.028

    Article  Google Scholar 

  26. E.R. Wang, X.D. Hui, Improved mechanical properties in cast Al–Si alloys by combined alloying of Fe and Cu. Mater. Sci. Eng. A (2010). https://doi.org/10.1016/j.msea.2010.08.058

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed according to the Government research assignment for ISPMS SB RAS, Project No. III.23.2.11, and with the support of the Russian Foundation for Basic Research according to research Project No. 16-38-60146 mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zykova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykova, A.P., Chumaevskiy, A.V. The Formation of Iron-Containing Intermetallic Phases in Al–12%Si Alloy by Using Tungsten Addition. Metallogr. Microstruct. Anal. 9, 360–368 (2020). https://doi.org/10.1007/s13632-020-00649-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-020-00649-y

Keywords

Navigation