Skip to main content
Log in

Microstructure Evolution and Phase Transitions of the Annealed Cu–11%Al Alloy with Sn and Gd Additions

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

A Correction to this article was published on 27 November 2019

This article has been updated

Abstract

The effects of Sn or Gd additions on the microstructure and phases transitions of the Cu–11%Al alloy (composition in wt.) were studied by Vickers microhardness measurements as a function of quenching temperature, optical microscopy (OM), scanning electronic microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The results showed that the addition of Sn stabilizes the \( \beta \) phases, whereas the addition of Gd modifies the alloy microstructure, but it does not significantly interfere on the phase transitions observed in the Cu–11%Al alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 27 November 2019

    The original version of this article was updated to center (wt.%) in the table headings.

References

  1. H.H. Kuo, W.H. Wang, Y.F. Hsu, C.A. Huang, The corrosion behavior of Cu–Al and Cu–Al–Be shape-memory alloys in 0.5 M H2SO4 solution. Corros. Sci. 48, 4352–4364 (2006). https://doi.org/10.1016/j.corsci.2006.04.006

    Article  CAS  Google Scholar 

  2. M.A. Shaik, K.H. Syed, B.R. Golla, Electrochemical behavior of mechanically alloyed hard Cu–Al alloys in marine environment. Corros. Sci. 153, 249–257 (2019). https://doi.org/10.1016/j.corsci.2019.03.043

    Article  CAS  Google Scholar 

  3. S. Montecinos, S. Simison, Corrosion behavior of Cu–Al–Be shape memory alloys with different compositions and microstructures. Corros. Sci. 74, 387–395 (2013). https://doi.org/10.1016/j.corsci.2013.05.012

    Article  CAS  Google Scholar 

  4. M.A. Haidar, S.N. Saud, E. Hamzah, Microstructure, mechanical properties, and shape memory effect of annealed Cu–Al–Ni–xCo shape memory alloys. Metallogr. Microstruct. Anal. 7, 57–64 (2017). https://doi.org/10.1007/s13632-017-0413-2

    Article  CAS  Google Scholar 

  5. J.P. Oliveira, B. Crispim, Z. Zeng, T. Omori, F.M. Braz Fernande, R.M. Miranda, Microstructure and mechanical properties of gas tungsten arc welded Cu–Al–Mn shape memory alloy rods. J. Mater. Process. Technol. 271, 93–100 (2019). https://doi.org/10.1016/j.jmatprotec.2019.03.020

    Article  CAS  Google Scholar 

  6. M.F. Shuwadi, S.N. Saud, E. Hamzah, Deformation influences on microstructure, mechanical properties, and shape memory behavior of Cu–Al–Ni–xTi shape memory alloys. Metallogr. Microstruct. Anal. 8, 406–414 (2019). https://doi.org/10.1007/s13632-019-00526-3

    Article  CAS  Google Scholar 

  7. A. Agrawala, R. Kumar Dube, Methods of fabricating Cu–Al–Ni shape memory alloys. J. Alloys Compd. 750, 235–247 (2018). https://doi.org/10.1016/j.jallcom.2018.03.390

    Article  CAS  Google Scholar 

  8. J.L. Murray, The aluminium–copper system. Int. Met. 30, 211–233 (1985)

    Article  CAS  Google Scholar 

  9. J.R. Davis, ASM Speciality Handbook: Copper and Copper Alloys (ASM International, Cleveland, 2001)

    Google Scholar 

  10. G.F. Brazolin, C. Aksu Canbay, S. Ozgen, A.B. Oliveira, R.A.G. Silva, Effects of Gd addition on the thermal and microstructural behaviors of the as-cast Cu–9%Al and Cu–9%Al–10%Mn alloys. Appl. Phys. A 122, 928 (2016). https://doi.org/10.1007/s00339-016-0474-0

    Article  CAS  Google Scholar 

  11. G.F. Brazolin, C.C.S. Silva, L.S. Silva, R.A.G. Silva, Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy. J. Therm. Anal. Calorim. (2018). https://doi.org/10.1007/s10973-018-7586-z

    Article  Google Scholar 

  12. A.B. Oliveira, R.A.G. Silva, Thermomagnetic behavior of an as-quenched Cu–Al–Mn–Gd alloy. Mater. Chem. Phys. 209, 112–120 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.072

    Article  CAS  Google Scholar 

  13. A.B. Oliveira, A. Paganotti, R.A.G. Silva, Kinetics of martensite decomposition in a Gd-modified Cu–Al alloy. J. Phys. Chem. Solids (2019). https://doi.org/10.1016/j.jpcs.2019.109074

    Article  Google Scholar 

  14. S.L. Leach, G.V. Raynor, The constitution of the copper-rich copper–aluminium–tin alloys, with special reference to ternary compound formation, W. Hume-Rothery. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 12, 251–259 (1954)

    Google Scholar 

  15. D.F. Soares, M. Abreu, D. Barros, F. Castro, Experimental study of the Cu–Al–Sn phase equilibria, close to the copper zone. J. Min. Met. Sect. B Metall. 53, 209–213 (2017). https://doi.org/10.2298/JMMB170515034S

    Article  CAS  Google Scholar 

  16. A.K. Chakrabarty, K.T. Jacob, Isothermal transformation of β-phase in Cu-rich Cu–Al–Sn alloys. Int. J. Mater. Res. 104, 430–444 (2013). https://doi.org/10.3139/146.110881

    Article  CAS  Google Scholar 

  17. J. Miettinen, Thermodynamic description of the Cu–Al–Sn system in the copper-rich corner. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 33A, 1639–1648 (2002). https://doi.org/10.1007/s11661-002-0173-7

    Article  CAS  Google Scholar 

  18. A.G. Magdalena, A.T. Adorno, T.M. Carvalho, R.A.G. Silva, β phase transformations in the Cu-11mass % Al alloy with Ag additions. J. Therm. Anal. Calorim. 106, 339–342 (2011). https://doi.org/10.1007/s10973-011-1432-x

    Article  CAS  Google Scholar 

  19. R.A.G. Silva, A. Paganotti, S. Gama, A.T. Adorno, T.M. Carvalho, C.M.A. Santos, Investigation of thermal, mechanical and magnetic behaviors of the Cu–11%Al alloy with Ag and Mn additions. Mater. Charact. 75, 194–199 (2013). https://doi.org/10.1016/j.matchar.2012.11.007

    Article  CAS  Google Scholar 

  20. A.T. Adorno, T.M. Carvalho, A.G. Magdalena, C.M.A. Santos, R.A.G. Silva, Activation energy for the reverse eutectoid reaction in hypo-eutectoid Cu–Al alloys. Thermochim. Acta 531, 35–41 (2012). https://doi.org/10.1016/j.tca.2011.12.027

    Article  CAS  Google Scholar 

  21. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856

    Article  CAS  Google Scholar 

  22. D. Balzar, N.C. Popa, Analyzing microstructure by Rietveld refinement *. Rigaku J. 22, 16–25 (2005)

    CAS  Google Scholar 

  23. A.A. Coelho, J. Evans, I. Evans, A. Kern, S. Parsons, The TOPAS symbolic computation system. Powder Diffr. S 26, S22–S25 (2011). https://doi.org/10.1154/1.3661087

    Article  CAS  Google Scholar 

  24. B.H. Toby, R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006). https://doi.org/10.1154/1.2179804

    Article  CAS  Google Scholar 

  25. S. Holgersson, X-ray investigation of alloys. Ann. Der Phys. 4, 35–54 (1926). https://doi.org/10.1002/andp.19263840103

    Article  Google Scholar 

  26. J.S. Llewelyn Leach, On the structure of a phase formed in copper-aluminum alloys at low temperatures. J. Inst. Met. 92, 93–94 (1964)

    Google Scholar 

  27. A.J. Bradley, P. Jones, An X-ray investigation of the copper-aluminium alloys, J. Inst. Met. 625, 131–162 (1933)

    Google Scholar 

  28. G. Kurdjumov, V. Mireckij, T. Stelleckaja, Transformations in eutectoid alloys of Cu - Al. V. Structure of the martensitic phase gamma’ and the mechanism of the beta1 - gamma’ transformation. Zhurnal Tekhnicheskoi Fiz. 8, 1959–1972 (1938)

    Google Scholar 

  29. K.H. Buschow, A.S. Van der Goot, Composition and crystal structure of hexagonal Cu-rich rare earth - copper compounds. Acta Crystallogr. B. 27 1085–1088 (1971). https://doi.org/10.1107/S0567740871003558

    Article  CAS  Google Scholar 

  30. N. Hoang Luong, J.J.M. Franse, T. Duc Hien, Specific heat and thermal expansion in GdxY1-xCu2. J. Phys. F. 15, 1751–1763 (1985). https://doi.org/10.1088/0305-4608/15/8/014

    Article  Google Scholar 

  31. H. Kwarciak, J. Bojarski, Z. Morawiec, Phase transformation in martensite of Cu-12.4% Al. J. Mater. Sci. 21, 788–792 (1986). https://doi.org/10.1007/BF01117355

    Article  CAS  Google Scholar 

  32. I. Tarora, The transformation process of β-phase of Cu-Al system and the effect of Mn addition upon it (fouth report). J. Japan Inst. Met. 13, 13–18 (1979). https://doi.org/10.2320/jinstmet1937.13.3_13

    Article  Google Scholar 

  33. H. Hendus, H. Knoedler, Die Überstruktur der gamma-Hoch temperature phase in System Kupfer-Zinn. Acta Crystallogr. 9, 1036 (1956). https://doi.org/10.1107/S0365110X56002990

    Article  CAS  Google Scholar 

  34. V.T. Deshpande, D.B. Sirdeshmukh, Thermal expansion of tetragonal tin. Acta Crystallogr. 14, 355–356 (1961). https://doi.org/10.1107/S0365110X61001212

    Article  CAS  Google Scholar 

  35. D. Hull, T.W. Clyne, An Introduction to Composite Materials, 2nd edn. (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors thank FAPESP (2012/050570-5 and 2019/06717-0) and CNPq for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Souza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, J.S., Silva, R.A.G. Microstructure Evolution and Phase Transitions of the Annealed Cu–11%Al Alloy with Sn and Gd Additions. Metallogr. Microstruct. Anal. 8, 782–794 (2019). https://doi.org/10.1007/s13632-019-00586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00586-5

Keywords

Navigation