Skip to main content
Log in

Microstructural Changes During Stress Relief Heat Treatment of Inconel 625–A106 Carbon Steel Joint

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The present study investigates the effect of stress relief treatment at different temperatures (900, 1040, and 1200 °C) on the microstructure of Inconel 625 and A106 carbon steel weld joints. The results of the study show that, due to the generation of heat by welding, the bainite phase was formed in the heat-affected zone of A106 alloy. By applying stress relief treatment, even at the lowest temperature, the bainite phase was removed from the microstructure and the ferritic–pearlitic structure was formed. As the temperature of stress relief treatment increased, the grain size of the samples and the ratio of pearlite structure increased in the matrix. The morphology of the weld metal was converted from the columnar dendritic to an island state. Gradually, by increasing the temperature up to 1200 °C, austenitic grain boundary appeared in the microstructure. The SEM results confirmed the presence of complex molybdenum–niobium–rich carbides among secondary phase particles in the weld zone. In addition, an increase in the heat treatment temperature caused an increase in the concentration and dimensions of the carbides in the heat-affected zone, weld metal, and base metal of Inconel 625.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Devendranath Ramkumar et al., Influence of filler metals in the control of deleterious phases during the multi-pass welding of Inconel 718 plates. Acta Metall. Sin. (Engl. Lett.) 28(2), 196–207 (2015). https://doi.org/10.1007/s40195-014-0185-5

    Article  CAS  Google Scholar 

  2. H. Shah Hosseini, M. Shamanian, A. Kermanpur, Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater. Charact. 62(4), 425–431 (2011). https://doi.org/10.1016/j.matchar.2011.02.003

    Article  CAS  Google Scholar 

  3. N. Dudova, R. Kaibyshev, On the precipitation sequence in a 10% Cr steel under tempering. ISIJ Int. 51(5), 826–831 (2011). https://doi.org/10.2355/isijinternational.51.826

    Article  CAS  Google Scholar 

  4. K. Devendranath Ramkumar, N. Arivazhagan, S. Narayanan, Effect of filler materials on the performance of gas tungsten arc welded AISI 304 and Monel 400. Mater. Des. 40, 70–79 (2012). https://doi.org/10.1016/j.matdes.2012.03.024

    Article  CAS  Google Scholar 

  5. M.J. Donachie Jr., Relationship of Properties to Microstructure in Superalloys (American Society for Metals, Superalloys–Source Book, New York, 1984), pp. 102–111

    Google Scholar 

  6. J.K. Hong et al., Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding. J. Mater. Process. Technol. 201(1–3), 515–520 (2008). https://doi.org/10.1016/j.jmatprotec.2007.11.224

    Article  CAS  Google Scholar 

  7. K.G. Kumar, K.D. Ramkumar, N. Arivazhagan, Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L. J. Mech. Sci. Technol. 29(3), 1039–1047 (2015). https://doi.org/10.1007/s12206-014-1112-4

    Article  Google Scholar 

  8. S.G.K. Manikandan et al., Effect of weld cooling rate on Laves phase formation in Inconel 718 fusion zone. J. Mater. Process. Technol. 214(2), 358–364 (2014). https://doi.org/10.1016/j.jmatprotec.2013.09.006

    Article  CAS  Google Scholar 

  9. H. Naffakh, M. Shamanian, F. Ashrafizadeh, Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J. Mater. Process. Technol. 209(7), 3628–3639 (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.019

    Article  CAS  Google Scholar 

  10. A. Olabi, M. Hashmi, Effects of the stress-relief conditions on a martensite stainless-steel welded component. J. Mater. Process. Technol. 77(1), 216–225 (1998). https://doi.org/10.1016/S0924-0136(97)00420-2

    Article  Google Scholar 

  11. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Effect of weld consumable conditioning on the diffusible hydrogen and subsequent residual stress and flexural strength of multipass Welded P91 steels. Metall. Mater. Trans. B 49(5), 2881–2895 (2018). https://doi.org/10.1007/s11663-018-1314-8

    Article  CAS  Google Scholar 

  12. C. Pandey, M.M. Mahapatra, Effect of heat treatment on microstructure and hot impact toughness of various zones of P91 welded pipes. J. Mater. Eng. Perform. 25(6), 2195–2210 (2016). https://doi.org/10.1007/s11665-016-2064-x

    Article  CAS  Google Scholar 

  13. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Some studies on P91 steel and their weldments. J. Alloys Compd. 743, 332–364 (2018). https://doi.org/10.1016/j.jallcom.2018.01.120

    Article  CAS  Google Scholar 

  14. C. Pandey, A. Giri, M.M. Mahapatra, P. Kumar, Characterization of microstructure of HAZs in as-welded and service condition of P91 pipe weldments. Met. Mater. Int. 23(1), 148–162 (2017). https://doi.org/10.1007/s12540-017-6394-5

    Article  CAS  Google Scholar 

  15. C. Pandey, M.M. Mahapatra, P. Kumar, J.G. Thakre, N. Saini, Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state. J. Mater. Process. Technol. 263, 241–255 (2019). https://doi.org/10.1016/j.jmatprotec.2018.08.032

    Article  CAS  Google Scholar 

  16. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint. Mater. Sci. Eng. A 712, 720–737 (2018). https://doi.org/10.1016/j.msea.2017.12.039

    Article  CAS  Google Scholar 

  17. C.C. Silva et al., New insight on the solidification path of an alloy 625 weld overlay. J. Mater. Res. Technol. 2(3), 228–237 (2013). https://doi.org/10.1016/j.jmrt.2013.02.008

    Article  CAS  Google Scholar 

  18. J. Watson, J. Christian, Low-temperature properties of K-Monel, Inconel-X, René 41, Haynes 25, and Hastelloy B sheet alloys. J. Fluids Eng. 84(2), 265–277 (1962). https://doi.org/10.1115/1.3657301

    Article  CAS  Google Scholar 

  19. A.S.M. Handbook, Vol. 1-Properties and Selection: Irons, Steels, and High-Performance Alloys. ASM International (1990). https://doi.org/10.31399/asm.hb.v01.9781627081610

    Article  Google Scholar 

  20. S. Lee et al., Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Mater. 50(19), 4755–4762 (2002). https://doi.org/10.1016/S1359-6454(02)00313-0

    Article  CAS  Google Scholar 

  21. S. Seddighi, F. Ostovan, E. Shafiei, M. Toozandehjani, A study on the effect of stress relief heat treatment on the microstructure and mechanical properties of dissimilar GTAW weld joints of Inconel 625 and A106 carbon steel. Mater. Res. Express 6(8), 086582 (2019). https://doi.org/10.1088/2053-1591/ab1fcb

    Article  Google Scholar 

  22. Porter, D.A., K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys (Revised Reprint, 2009). https://doi.org/10.1201/9781439883570

  23. A. Itman Filho et al., Influence of niobium and molybdenum on mechanical strength and wear resistance of microalloyed steels. Mater. Res. 20(4), 1029–1034 (2017). https://doi.org/10.1590/1980-5373-mr-2016-1101

    Article  CAS  Google Scholar 

  24. T. Thorvaldsson, G. Dunlop, Grain boundary Cr-depleted zones in Ti and Nb stabilized austenitic stainless steels. J. Mater. Sci. 18(3), 793–803 (1983). https://doi.org/10.1007/BF00745578

    Article  CAS  Google Scholar 

  25. H. Zhang et al., Effect of precipitated carbides on the fretting wear behavior of Inconel 600 alloy. Wear 315(1), 58–67 (2014). https://doi.org/10.1016/j.wear.2014.03.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Ostovan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, S., Ostovan, F., Shafiei, E. et al. Microstructural Changes During Stress Relief Heat Treatment of Inconel 625–A106 Carbon Steel Joint. Metallogr. Microstruct. Anal. 8, 495–505 (2019). https://doi.org/10.1007/s13632-019-00562-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00562-z

Keywords

Navigation