Skip to main content
Log in

Evolution of Metallurgical Phases and Its Co-relation with Mechanical Properties and Corrosion Resistance of 22Cr–5Ni–3Mo and 16Cr–10Ni–2Mo Dissimilar Weldments

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

22Cr–5Ni–3Mo is highly sustainable in aggressive environments and also better substitute of 16Cr–10Ni–2Mo austenitic grade, which illustrates the unavoidability of dissimilar joint in many corrosive environments for cost effectiveness. The information about welding parameters, microstructure, mechanical properties, texture, and corrosion resistance behavior in highly harsh environment of dissimilar weld by common fusion welding is limited. The present study addresses dissimilar welds between 22Cr–5Ni–3Mo and 16Cr–10Ni–2Mo stainless steels, employing SMAW process by using two different weld parameters (based on current) and investigates the microstructural evolution and correlated with mechanical and corrosion resistance of the weldment. The microstructural studies were done by using an optical microscope and scanning electron microscopy. Mechanical properties are studied in terms of tensile strength and hardness. The electrochemical assessments were carried out including modified double-loop electrochemical potentiodynamic reactivation test and modified tensile test. EBSD analysis was carried out to know the grain size variation quantitatively in the weld metal and/or heat affected zone. Analyzed results showed the well-balanced ferrite/austenite amount for both high and low heat input. 16Cr–10Ni–2Mo base metal showed twin boundaries, whereas 22Cr–5Ni–3Mo base metal showed banded structure of ferrite and austenite. EBSD analysis revealed that the low heat input weld showed less grain growth as compared to high heat input with <111> austenite orientation, because of lower misorientation. With increasing heat input, ferrite content of the weld region decreases resulting in lower hardness and tensile strength. Modified tensile test in chloride environment affected the plasticity of the materials. High heat input helps to increase the intergranular corrosion resistance by increasing austenite phase formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.P. Logan, A.I. Toumpis, A.M. Galloway, N.A. McPherson, S.J. Hambling, Dissimilar friction stir welding of duplex stainless steel to low alloy structural steel. Sci. Technol. Weld. Join. 21(1), 11–19 (2015)

    Article  Google Scholar 

  2. S. Wang, Q. Ma, Y. Li, Characterization of microstructure, mechanical properties and corrosion resistance of dissimilar welded joint between 2205 duplex stainless steel and 16MnR. Mater. Des. 32, 831–837 (2011)

    Article  Google Scholar 

  3. G.M. Reddy, K.S. Rao, T. Sekhar, Microstructure and pitting corrosion of similar and dissimilar stainless steel welds. Sci. Technol. Weld. Join. 13, 363–377 (2008)

    Article  Google Scholar 

  4. J. Labanowski, Mechanical properties and corrosion resistance of dissimilar stainless steel Welds. J. Arch. Mater. Sci. Eng. 28, 27–33 (2007)

    Google Scholar 

  5. M. Balakrishnan, J. Anburaj, S.S. Mohamed Nazirudeen, L. Neelakantan, R. Narayanan, Influence of intermetallic precipitates on pitting corrosion of high Mo super austenitic stainless steel. Trans. Ind. Inst. Met. 68, S267–S279 (2015)

    Article  Google Scholar 

  6. R.V. Taiwade, S.J. Patre, A.P. Patil, Studies on welding and sensitization of chrome- manganese austenitic stainless steel. Trans. Ind. Inst. Met. 64, 513–518 (2011)

    Article  Google Scholar 

  7. A.U. Malik, S.A. Alfozan, M.A. Romiahl, Relevance of corrosion research inthe material selection for desalination plants, in Proceeding of 2nd Scientific Symposium on Maintenance Planning and Operations, Saud University, Riyadh. 24–26 April (1993), pp. 885–900

  8. B. Deng, Y. Jiang, J. Gong, C. Zhong, J. Gao, J. Li, Critical pitting and re-passivation temperatures for duplex stainless steel in chloride solutions. Electrochem. Acta 53, 5220–5225 (2008)

    Article  Google Scholar 

  9. H. Matsunaga, Y.S. Sato, H. Kokawa, T. Kuwana, Effect of nitrogen on corrosion of duplex stainless steel weld metal. Sci. Technol. Weld. Join. 3, 225–232 (1998)

    Article  Google Scholar 

  10. A. Moteshakker, I. Danaee, S. Moeinifar, A. Ashrafi, Hardness and tensile properties of dissimilar welds joints between SAF 2205 and AISI 316L. Sci. Technol. Weld. Join. 21(1), 1–10 (2015)

    Article  Google Scholar 

  11. T. Udayakumar, K. Raja, T.M. Afsal Husain, P. Sathiya, Prediction and optimization of friction welding parameters for super duplex stainless steel (UNS S32760) joints. Mater. Des. 53, 226–235 (2014)

    Article  Google Scholar 

  12. Z. Cvijovic, G. Radenkovic, Microstructure and pitting corrosion resistance of annealed duplex stainless steel. Corros. Sci. 48, 3887–3906 (2006)

    Article  Google Scholar 

  13. J. Labanowski, Stress corrosion cracking susceptibility of dissimilar stainless steels welded joints. J. Achiev. Mater. Manuf. Eng. 20, 255–258 (2007)

    Google Scholar 

  14. J.W. AbtibolMenezes, H. Abreu, S. Kundu, H.K.D.H. Bhadeshia, P.M. Kelly, Crystallography of Widmanstatten austenite in duplex stainless steel weld metal. Sci. Technol. Weld. Join. 14, 4–10 (2009)

    Article  Google Scholar 

  15. H.Y. Liou, R.I. Hsieh, W.T. Tsai, Microstructure and pitting corrosion in simulated heat-affected zones of duplex stainless steels. Mater. Chem. Phys. 74, 33–42 (2002)

    Article  Google Scholar 

  16. A. Berthier, P. Paillard, F. Christien, Structural and chemical evolution of super duplex stainless steel on activated tungsten inert gas welding process. Sci. Technol. Weld. Join. 14, 681–690 (2009)

    Article  Google Scholar 

  17. G.S. Sidhu, S.S. Chatha, Role of shielded metal arc welding consumables on pipe weld joint. Int. J. Emerg. Technol. Adv. Eng. 2, 746–750 (2012)

    Google Scholar 

  18. N.V. Amudarasan, K. Palanikumar, K. Shanmugam, Impact behaviour and micro structural analysis of AISI 316L stainless steel weldments. Int. J. Appl. Innov. Eng. Manag. 2, 269–272 (2013)

    Google Scholar 

  19. H. Vashishtha, R.V. Taiwade, R.K. Khatirkar, A.V. Ingle, R.K. Dayal, Welding behaviour of low nickel chrome–manganese stainless steel. ISIJ Int. 54, 1361–1367 (2014)

    Article  Google Scholar 

  20. R. Unnikrishnan, K.S.N. Satish Idury, R.K. Khatirkar, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Mater. Charact. 3, 10–23 (2014)

    Article  Google Scholar 

  21. S. Kumar, A.S. Shahi, Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Mater. Des. 32, 3617–3623 (2011)

    Article  Google Scholar 

  22. Standard practice for preparation of metallographic specimens. ASTM E 3-95, Philadelphia, PA, USA (2001)

  23. Metallography and microstructures, Materials Park, OH: ASM International, ASM Handbook (2004)

  24. J. Gong, Y.M. Jiang, B. Deng, J.L. Xu, J.P. Hu, J. Li, Evaluation of intergranular corrosion susceptibility of UNS S31803 duplex stainless steel with an optimized double loop electrochemical potentiokinetic reactivation method. Electrochem. Acta 55, 5077–5083 (2010)

    Article  Google Scholar 

  25. M. Rahmani, A. Eghlimi, M. Shamanian, Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint. J. Mater. Eng. Perform. 23, 3745–3753 (2014)

    Article  Google Scholar 

  26. J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steel (Wiley, New York, 2005)

    Google Scholar 

  27. T. Chehuan, V. Dreilich, K.S. de Assis, F.V.V. de Sousa, O.R. Mattos, Influence of multipass pulsed gas metal arc welding on corrosion behaviour of a duplex stainless steel. Corros. Sci. 86, 268–274 (2014)

    Article  Google Scholar 

  28. A.J. Ramirez, S.D. Brandi, J.C. Lippold, Secondary austenite and chromium nitride precipitation in simulated heat affected zones of duplex stainless steels. Sci. Technol. Weld. Join. 9, 301–313 (2004)

    Article  Google Scholar 

  29. A. Eghlimi, M. Shamanian, K. Raeissi, Effect of current type on microstructure and corrosion resistance of super duplex stainless steel claddings produced by the gas tungsten arc welding process. Surf. Coat. Technol. 244, 45–51 (2014)

    Article  Google Scholar 

  30. V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, S. Sundaresan, Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Mater. Sci. Eng. A 358, 9–16 (2003)

    Article  Google Scholar 

  31. L. Karlsson, J. Borjesson, Orientation relationships of intergranular austenite in duplex stainless steel weld metals. Sci. Technol. Weld. Join. 19, 318–323 (2014)

    Article  Google Scholar 

  32. W. Reick, M. Pohl, A.F. Padilha, Recrystallization-transformation combined annealing of a cold rolled ferritic-austenitic reactions during duplex stainless steel. ISIJ Int. 38, 567–571 (1998)

    Article  Google Scholar 

  33. J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma, W.H. Tong, Microstructure evolution inAISI 304 stainless steel during near rapid directional solidification. Mater. Sci. Technol. 25, 1013–1016 (2009)

    Article  Google Scholar 

  34. R. Kacar, Effect of solidification mode and morphology of microstructure on the hydrogen content of duplex stainless steel weld metal. Mater. Des. 25, 1–9 (2004)

    Article  Google Scholar 

  35. A. Eghlimi, M. Shamanian, M. Eskandarian, A. Zabolian, M. Nezakat, J.A. Szpunar, Evaluation of microstructure and texture across the welded interface of super duplex stainless steel and high strength low alloy steel. Surf. Coat. Technol. 264, 150–162 (2015)

    Article  Google Scholar 

  36. M. Mukherjeey, T.K. Pal, Influence of heat input on martensite formation and impact property of ferritic-austenitic dissimilar weld metals. J. Mater. Sci. Technol. 28(343), 343–352 (2012)

    Article  Google Scholar 

  37. J. Verma, R.V. Taiwade, Effect of austenitic and austeno-ferritic electrodes on 2205 duplex and 316L austenitic stainless steel dissimilar welds. J. Mater. Eng. Perform. 25, 4706–4717 (2016)

    Article  Google Scholar 

  38. H.Y. Liou, Y.T. Pan, R.I. Hsieh, W.T. Tsai, Effects of alloying elements on the mechanical properties and corrosion behaviours of 2205 duplex stainless steels. J. Mater. Eng. Perform. 10, 231–241 (2001)

    Article  Google Scholar 

  39. M.O.H. Amuda, S. Mridha, An overview of sensitization dynamics in ferritic stainless steel Welds. Int. J. Corros. (2011) 1–9

  40. C.J.V. Niekerk, M.D.U. Toit, M.W. Erwee, Sensitization of AISI 409 ferritic stainless steel during low heat input arc welding. Weld. World 56, 54–64 (2012)

    Article  Google Scholar 

  41. K.H. Lo, C.T. Kwok, W.K. Chan, Characterisation of duplex stainless steel subjected tolong-term annealing in the sigma phase formation temperature range by the DLEPR test. Corros. Sci. 53, 3697–3703 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagesvar Verma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, J., Taiwade, R.V., Kataria, R. et al. Evolution of Metallurgical Phases and Its Co-relation with Mechanical Properties and Corrosion Resistance of 22Cr–5Ni–3Mo and 16Cr–10Ni–2Mo Dissimilar Weldments. Metallogr. Microstruct. Anal. 8, 506–516 (2019). https://doi.org/10.1007/s13632-019-00558-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00558-9

Keywords

Navigation