Skip to main content

Comparison of Mixing Strategies and Hybrid Ratio Optimization for Mechanical Properties Enhancement of Al-CeO2-GNP’s Metal Matrix Composite Fabricated by Friction Stir Processing

Abstract

In this work, mechanical properties enhancement of AA6061 metal matrix composite (MMC) is carried out by synergizing nanoparticles mixing strategies and hybrid ratio. Dry mixing and solvent-based mixing of CeO2 and graphene nanoplatelets (GNP) are compared separately as well as in volume percentages of 75/25, 50/50, and 25/75, respectively. Solvent-based mixing proved to be more effective in separating particles agglomerates and mixing them uniformly due to polar nature of solvent and agitation of sonicator. Nanoparticles of CeO2 and graphene are embedded by friction stir processing (FSP) in metal matrix. Four numbers of passes are performed, and rotational and traverse speeds of 1000 rpm and 40 mm/min are kept for first three passes and 1000 rpm and 60 mm/min for fourth pass, respectively. Microstructure analysis of FSPed samples divulged the contribution of nanoparticles in refining grains due to their pinning effect in retarding grain growth. Because of grain refinements and obstacles posed by particles to dislocation movement, enhancements in hardness and tensile strength of MMC are observed. 50/50 volume percentage is recorded as optimum in improving tensile strength and microhardness. Fractography showed that fracture shifts from ductile to brittle with increasing content of graphene. It is suggested that formation of Al4C3 caused brittle failure. Highest improvement of 69.3% in microhardness and that of 12.9% in UTS are recorded as compared to base metal.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    L. Ceschini, A. Dahle, M. Gupta, A. Jarfors, S. Jayalakshmi, A. Morri, F. Rotundo, S. Toschi, A. Singh, Aluminum and Magnesium Metal Matrix Nanocomposites (Springer, Singapore, 2016). https://doi.org/10.1007/978-981-10-2681-2

    Google Scholar 

  2. 2.

    K. Kainer, Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering (Wiley, Weinheim, 2006). https://doi.org/10.1002/3527608117

    Book  Google Scholar 

  3. 3.

    R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. R Rep. 50(1–2), 1–78 (2005). https://doi.org/10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  4. 4.

    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-smith, C.J. Dawes, “Friction Welding,” The Welding Institute TWI. Cambridge, Patent 91259788 (1991)

  5. 5.

    J.F. Guo, J. Liu, C.N. Sun, S. Maleksaeedi, G. Bi, M.J. Tan, J. Wei, Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater. Sci. Eng., A 602, 143–149 (2014). https://doi.org/10.1016/j.msea.2014.02.022

    Article  Google Scholar 

  6. 6.

    S. Dixit, A. Mahata, D.R. Mahapatra, S.V. Kailas, K. Chattopadhyay, Multi-layer graphene reinforced aluminum—manufacturing of high strength composite by friction stir alloying. Compos. B Eng. 136, 63–71 (2018). https://doi.org/10.1016/j.compositesb.2017.10.028

    Article  Google Scholar 

  7. 7.

    F. Khodabakhshi, S.M. Arab, P. Švec, A.P. Gerlich, Fabrication of a new Al–Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater. Charact. 132, 92–107 (2017). https://doi.org/10.1016/j.matchar.2017.08.009

    Article  Google Scholar 

  8. 8.

    M. Puviyarasan, V.S. Senthil Kumar, An experimental investigation for multi-response optimization of friction stir process parameters during fabrication of AA6061/B4Cp composites. Arab. J. Sci. Eng. 40(6), 1733–1741 (2015). https://doi.org/10.1007/s13369-015-1654-5

    Article  Google Scholar 

  9. 9.

    T. Prakash, S. Sivasankaran, P. Sasikumar, Mechanical and tribological behaviour of friction-stir-processed Al 6061 aluminium sheet metal reinforced with Al2O3/0.5Gr hybrid surface nanocomposite. Arab. J. Sci. Eng. 40(2), 559–569 (2014). https://doi.org/10.1007/s13369-014-1518-4

    Article  Google Scholar 

  10. 10.

    H.I. Kurt, Influence of hybrid ratio and friction stir processing parameters on ultimate tensile strength of 5083 aluminum matrix hybrid composites. Compos. B Eng. 93, 26–34 (2016). https://doi.org/10.1016/j.compositesb.2016.02.056

    Article  Google Scholar 

  11. 11.

    M. Amra, K. Ranjbar, R. Dehmolaei, Mechanical properties and corrosion behavior of CeO2 and SiC incorporated Al5083 alloy surface composites. J. Mater. Eng. Perform. 24(8), 3169–3179 (2015). https://doi.org/10.1007/s11665-015-1596-9

    Article  Google Scholar 

  12. 12.

    S.A. Hosseini, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing. J. Alloy. Compd. 622, 725–733 (2015). https://doi.org/10.1016/j.jallcom.2014.10.158

    Article  Google Scholar 

  13. 13.

    Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei, Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP). Mater. Sci. Eng., A 667, 125–131 (2016). https://doi.org/10.1016/j.msea.2016.04.094

    Article  Google Scholar 

  14. 14.

    A. Mostafapour Asl, S.T. Khandani, Role of hybrid ratio in microstructural, mechanical and sliding wear properties of the Al5083/Graphitep/Al2O3p a surface hybrid nanocomposite fabricated via friction stir processing method. Mater. Sci. Eng., A 559, 549–557 (2013). https://doi.org/10.1016/j.msea.2012.08.140

    Article  Google Scholar 

  15. 15.

    C.-H. Jeon, Y.-H. Jeong, J.-J. Seo, H.N. Tien, S.-T. Hong, Y.-J. Yum, S.-H. Hur, K.-J. Lee, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 15(6), 1235–1239 (2014). https://doi.org/10.1007/s12541-014-0462-2

    Article  Google Scholar 

  16. 16.

    X. Gao, H. Yue, E. Guo, H. Zhang, X. Lin, L. Yao, B. Wang, Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Mater. Des. 94, 54–60 (2016). https://doi.org/10.1016/j.matdes.2016.01.034

    Article  Google Scholar 

  17. 17.

    M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, J. She, Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng., A 630, 36–44 (2015). https://doi.org/10.1016/j.msea.2015.02.002

    Article  Google Scholar 

  18. 18.

    G. Li, B. Xiong, Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites. J. Alloy. Compd. 697, 31–36 (2017). https://doi.org/10.1016/j.jallcom.2016.12.147

    Article  Google Scholar 

  19. 19.

    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442(7100), 282–286 (2006)

    Article  Google Scholar 

  20. 20.

    D. Wei, R. Dave, R. Pfeffer, Mixing and characterization of nanosized powders: an assessment of different techniques. J. Nanopart. Res. 4(1), 21–41 (2002). https://doi.org/10.1023/A:1020184524538

    Article  Google Scholar 

  21. 21.

    A. Bianco, H.-M. Cheng, T. Enoki, Y. Gogotsi, R.H. Hurt, N. Koratkar, T. Kyotani, M. Monthioux, C.R. Park, J.M.D. Tascon, J. Zhang, All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013). https://doi.org/10.1016/j.carbon.2013.08.038

    Article  Google Scholar 

  22. 22.

    W.-W. Liu, B.-Y. Xia, X.-X. Wang, J.-N. Wang, Exfoliation and dispersion of graphene in ethanol–water mixtures. Front. Mater. Sci. 6(2), 176–182 (2012). https://doi.org/10.1007/s11706-012-0166-4

    Article  Google Scholar 

  23. 23.

    Standardization TIOf, ISO 14887: Sample Preparation—Dispersing Procedures for Powders in Liquids. Preparation of a Dilute Dispersion of the Powder. ISO/TC 24/SC 4 (2000)

  24. 24.

    V.S. Nguyen, D. Rouxel, R. Hadji, B. Vincent, Y. Fort, Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18(1), 382–388 (2011). https://doi.org/10.1016/j.ultsonch.2010.07.003

    Article  Google Scholar 

  25. 25.

    M. Mansoor, M. Shahid, Carbon nanotube-reinforced aluminum composite produced by induction melting. J. Appl. Res. Technol. 14(4), 215–224 (2016). https://doi.org/10.1016/j.jart.2016.05.002

    Article  Google Scholar 

  26. 26.

    M. Rahsepar, H. Jarahimoghadam, The influence of multipass friction stir processing on the corrosion behavior and mechanical properties of zircon-reinforced Al metal matrix composites. Mater. Sci. Eng., A 671, 214–220 (2016). https://doi.org/10.1016/j.msea.2016.05.056

    Article  Google Scholar 

  27. 27.

    A. Shafiei-Zarghani, S.F. Kashani-Bozorg, A.P. Gerlich, Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing. Mater. Sci. Eng., A 631(Suppl C), 75–85 (2015). https://doi.org/10.1016/j.msea.2015.02.038

    Article  Google Scholar 

  28. 28.

    F. Khodabakhshi, A.P. Gerlich, P. Švec, Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): microstructural characteristics and mechanical properties. Mater. Charact. 131(Suppl C), 359–373 (2017). https://doi.org/10.1016/j.matchar.2017.07.027

    Article  Google Scholar 

  29. 29.

    S.N. Alam, L. Kumar, Mechanical properties of aluminium based metal matrix composites reinforced with graphite nanoplatelets. Mater. Sci. Eng., A 667, 16–32 (2016). https://doi.org/10.1016/j.msea.2016.04.054

    Article  Google Scholar 

  30. 30.

    W. Hoziefa, S. Toschi, M.M.Z. Ahmed, A. Morri, A.A. Mahdy, M.M. El-Sayed Seleman, I. El-Mahallawi, L. Ceschini, A. Atlam, Influence of friction stir processing on the microstructure and mechanical properties of a compocast AA2024-Al2O3 nanocomposite. Mater. Des. 106, 273–284 (2016). https://doi.org/10.1016/j.matdes.2016.05.114

    Article  Google Scholar 

  31. 31.

    H.S. Arora, H. Singh, B.K. Dhindaw, Composite fabrication using friction stir processing—a review. Int. J. Adv. Manuf. Technol. 61(9), 1043–1055 (2012). https://doi.org/10.1007/s00170-011-3758-8

    Article  Google Scholar 

  32. 32.

    D. Ahmadkhaniha, M. Heydarzadeh Sohi, A. Salehi, R. Tahavvori, Formations of AZ91/Al2O3 nano-composite layer by friction stir processing. J. Magnes. Alloys 4(4), 314–318 (2016). https://doi.org/10.1016/j.jma.2016.11.002

    Article  Google Scholar 

  33. 33.

    G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, P. Švec, Reactive mechanism and mechanical properties of in situ hybrid nano-composites fabricated from an Al–Fe2O3 system by friction stir processing. Mater. Charact. 127(Suppl 3), 279–287 (2017). https://doi.org/10.1016/j.matchar.2017.03.007

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the collaboration between UTP, Malaysia, and UET, Taxila.

Funding

This research was not funded by any source.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Basit Yaqoob.

Ethics declarations

Conflict of interest

Authors do not have any competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yaqoob, B., Pasha, R.A., Awang, M. et al. Comparison of Mixing Strategies and Hybrid Ratio Optimization for Mechanical Properties Enhancement of Al-CeO2-GNP’s Metal Matrix Composite Fabricated by Friction Stir Processing. Metallogr. Microstruct. Anal. 8, 534–544 (2019). https://doi.org/10.1007/s13632-019-00553-0

Download citation

Keywords

  • Friction stir processing
  • Hybrid composites
  • Nanoparticles mixing
  • Mechanical properties
  • Fractography