Effect of High-Energy Ball Milling on Structure and Properties of Some Intermetallic Alloys: A Mini Review

  • Fatma HadefEmail author


Currently, lightweight materials and structures are potentially required for economical aspects. A major preoccupation of engineers and materials scientists is to create and to develop existing materials to satisfy the rising needs of industries and population. It is well known that intermetallic compounds, such as aluminides, are used for a wide range of applications, due to their superior properties. These materials are generally produced through conventional manufacturing routes: melting, casting, powder grinding, and consolidation by hot pressing. However, these methods are inapplicable to the elaboration of some intermetallic alloys. The solid-state reaction of mechanical alloying makes it a processing way of choice for alloying elements that are difficult or impossible to combine by conventional melting methods. On the other hand, MA process seems to be a simple and cost-effective technique for improving structural and magnetic properties of intermetallic alloys. Within this context, this paper provides an overview of the experimental investigations performed on mechanical alloying/milling of γ-TiAl, τ-MnAl, and B2-RuAl intermetallic alloys.


Mechanical alloying Mechanical milling γ-TiAl τ-MnAl B2-RuAl 



This work was supported by the Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria.


  1. 1.
    D. Chaira, S. Kumar Karak, Fabrication of nanostructured materials by mechanical milling, in Handbook of Mechanical Nanostructuring, ed. by M. Aliofkhazraei (Wiley-VCH, Weinheim, 2015), pp. 379–416CrossRefGoogle Scholar
  2. 2.
    A. Al-Azzawi, P. Baumli, G. Mucsi, Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 1–184 (2015). CrossRefGoogle Scholar
  3. 3.
    J.B. Fogagnolo, D. Amadora, E.M. Ruiz-Navas, J.M. Torralba, Solid solution in Al–4.5 wt% Cu produced by mechanical alloying. Mater. Sci. Eng. A 433, 45–49 (2006)CrossRefGoogle Scholar
  4. 4.
    S. Shukla, A. Banas, R.V. Ramanujan, Atomistic mechanism of cyclic phase transitions in Nd–Fe–B based intermetallics. Intermetallics 19(8), 1265–1273 (2011)CrossRefGoogle Scholar
  5. 5.
    J.M. Loureiro, B. Malaman, B.F.O. Costa, G. Le Caër, V.A. Khomchenko, S. Das, V.S. Amaral, Comparison of disorder induced by annealing and quench and by ball-milling in B2 FeCo. Phys. Status Solidi 208(10), 3087–3090 (2011)CrossRefGoogle Scholar
  6. 6.
    P.R. Soni, Mechanical Alloying: Fundamentals and Applications (Cambridge International Science Publishing, Cambridge, 1998)Google Scholar
  7. 7.
    C. Suryanarayana, A. Al-Joubori, Encyclopedia of Iron, Steel, and Their Alloys (CRC Press, Boca Raton, 2015)Google Scholar
  8. 8.
    C.C. Koch, Amorphization of single composition powders by mechanical milling. Scr. Mater. 34(1), 21–27 (1996)CrossRefGoogle Scholar
  9. 9.
    S. Scudino, M. Sakaliyska, K.B. Surreddi, J. Eckert, Mechanical alloying and milling of Al–Mg alloys. J. Alloys Compd. 483(1), 2–7 (2009)CrossRefGoogle Scholar
  10. 10.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46(1), 1–184 (2001)CrossRefGoogle Scholar
  11. 11.
    L. Lü, M.O. Lai, Mechanical Alloying (Kluwer Academic Publishers, Boston, 1998)CrossRefGoogle Scholar
  12. 12.
    S. Amadori, E. Bonetti, E.G. Campari, L. Pasquini, Production and characterization of aluminum iron powder composites with ferromagnetic properties. Mater. Sci. Forum 678, 135–143 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Torres Torres, Valdés A. Flores, J.M. Almanza Robles, Elaboration of Al–Mn alloys by aluminothermic reduction of Mn2O3. Mater. Today Proc. 2(10), 4963–4970 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Vedani, Effects of reinforcement parameters on fatigue strength of aluminium-based particulate-reinforced composites. Mater. Sci. Forum 678, 125–134 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Borgonovo, D. Apelian, Manufacture of aluminum nanocomposites: a critical review. Mater. Sci. Forum 678, 1–22 (2011)CrossRefGoogle Scholar
  16. 16.
    H. Mo Lee, Design of Al3(Ti, V, Zr) systems through phase stability calculations. Mater. Sci. Eng. A 152(1), 26–30 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Mitra, Structural Intermetallics and Intermetallic Matrix Composites (CRC Press, Boca Raton, 2015)CrossRefGoogle Scholar
  18. 18.
    R.A. Rodriguez-Diaz, J. Frausto-Solis, A. Sedano, A. Molina, J. Porcayo-Calderon, J. Juarez-Islas, Fabrication of a disordered and nano-grain sized FeAl intermetallic alloy by two ball milling conditions: microstructural characterization and crystallite modeling perspective. Dig. J. Nanomater. Biosci. 10(2), 521–528 (2015)Google Scholar
  19. 19.
    M.A. Morris-Munoz, A. Dodge, D.G. Morris, Structure, strength and toughness of nanocrystalline FeAl. Nanostruct. Mater. 11(7), 873–885 (1999)CrossRefGoogle Scholar
  20. 20.
    K. Wolski, G. Le Caer, P. Delcroix, R. Fillit, F. Thevenot, J. Le Coze, Influence of milling conditions on the FeAl intermetallic formation by mechanical alloying. Mater. Sci. Eng. A 207(1), 97–104 (1996)CrossRefGoogle Scholar
  21. 21.
    H.W. Shi, D. Guo, Y. Ouyang, Structural evolution of mechanically alloyed nanocrystalline FeAl intermetallics. J. Alloys Compd. 455(1), 207–209 (2008)CrossRefGoogle Scholar
  22. 22.
    L. D’Angelo, L. D’Onofrio, G. Gonzalez, Nanophase intermetallic FeAl obtained by sintering after mechanical alloying. J. Alloys Compd. 483(1), 154–158 (2009)CrossRefGoogle Scholar
  23. 23.
    H. Song, Y. Wu, C. Tang, S. Yuan, Q. Gong, J. Liang, Microstructure and mechanical properties of FeAl intermetallics prepared by mechanical alloying and hot-pressing. Tsinghua Sci. Technol. 14(3), 300–306 (2009)CrossRefGoogle Scholar
  24. 24.
    E. Bonetti, G. Scipione, R. Frattini, S. Enzo, L. Schiffini, Structural and elastic behavior of Fe50Al50 nanocrystalline alloys. J. Appl. Phys. 79, 7537–7544 (1996)CrossRefGoogle Scholar
  25. 25.
    F. Hadef, A. Otmani, A. Djekoun, J.M. Greneche, Nanocrystalline FeAl intermetallics obtained in mechanically alloyed Fe50Al40Ni10 powder. Superlattices Microstruct. 49, 654–665 (2011)CrossRefGoogle Scholar
  26. 26.
    T. Chen, J.M. Hampikian, N.N. Thadhani, Synthesis and characterization of mechanically alloyed and shock-consolidated nanocrystalline NiAl intermetallic. Acta Mater. 47(8), 2567–2579 (1999)CrossRefGoogle Scholar
  27. 27.
    A. Albiter, M. Salazar, E. Bedolla, R.A.L. Drew, R. Perez, Improvement of the mechanical properties in a nanocrystalline NiAl intermetallic alloy with Fe, Ga and Mo additions. Mater. Sci. Eng. A 347(1), 154–164 (2003)CrossRefGoogle Scholar
  28. 28.
    S.C. Hanyaloglu, B. Aksakal, I.J. McColm, Reactive sintering of electroless nickel-plated aluminum powders. Mater. Charact. 47(1), 9–16 (2001)CrossRefGoogle Scholar
  29. 29.
    G.H. Akbari, H. Attarzadeh, A. Khajesarvi, Effect of milling time on the formation of NiAl nanostructure intermetallic produced by the mechanical alloying process. Adv. Mater. Res. 829, 115–119 (2014)CrossRefGoogle Scholar
  30. 30.
    D. Zhong, J.J. Moore, J. Disam, S. Thiel, I. Dahan, Deposition of NiAl thin films from NiAl compound target fabricated via combustion synthesis. Surf. Coat. Technol. 120–121, 22–27 (1999)CrossRefGoogle Scholar
  31. 31.
    W.E. Wallace, Rare Earth Intermetallics (Academic Press, New York, 1973)Google Scholar
  32. 32.
    G. Sauthoff, Intermetallics (VCH Verlagsgesellschaft, Weinheim, 1995)CrossRefGoogle Scholar
  33. 33.
    N. Cinca, J.M. Guilemany, Thermal spraying of transition metal aluminides: an overview. Intermetallics 24, 60–72 (2012)CrossRefGoogle Scholar
  34. 34.
    J.H. Westbrook, Structural Intermetallics (TMS, Warrendale, 1993)Google Scholar
  35. 35.
    J.H. Westbrook, R.L. Fleischer, Intermetallic Compounds. Principles and Practice (Wiley, Chichester, 1995)Google Scholar
  36. 36.
    H. Mehrer, Self-diffusion, solute-diffusion and interdiffusion in binary intermetallics. Diffus. Found. 2, 1–72 (2014)CrossRefGoogle Scholar
  37. 37.
    R.W. Cahn, Frontiers of materials research/electronic and optical materials, in C-MRS International Symposi Proceedings (1999), pp. 57–66Google Scholar
  38. 38.
    D.G. Morris, X. Amils, S. Suriñach, M.D. Baró, M.A. Muñoz-Morris, Disordering of B2 intermetallics by ball milling, with particular attention of FeAl. J. Metastable Nanocryst. Mater. 10, 195–201 (2001)CrossRefGoogle Scholar
  39. 39.
    R.W. Cahn, A.G. Evans, High-Temperature Structural Materials (Springer, Berlin, 1996)CrossRefGoogle Scholar
  40. 40.
    F. Hadef, Synthesis and disordering of B2 TM-Al (TM = Fe, Ni, Co) intermetallic alloys by high energy ball milling: a review. Powder Technol. 311, 556–578 (2017)CrossRefGoogle Scholar
  41. 41.
    H. Dong, Surface Engineering of Light Alloys Aluminium, Magnesium and Titanium Alloys (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  42. 42.
    H.B. Bomberger, F.H. Froes, P.M. Morton, Titanium—a historical perspective, in Titanium Technology: Present Status and Future Trends, ed. by F.H. Froes, D. Eylon, N.B. Bomberger (The Titanium Development Association, Dayton, 1985), pp. 1–17Google Scholar
  43. 43.
    A.D. McQuillan, M.K. McQuillan, Titanium (Academic Press, New York, 1956)Google Scholar
  44. 44.
    S. Ramesh, L. Karunamoorthy, Turning investigations on machining of Ti64 alloy with different cutting tool inserts. Mater. Sci. Forum 763, 1–27 (2013)CrossRefGoogle Scholar
  45. 45.
    W. Kroll, Verformbare Legierungen des Titans. Z Metallkunde 29, 189–192 (1937)Google Scholar
  46. 46.
    M. Qian, F.H. Froes, Titanium Powder Metallurgy: Science, Technology and Applications (Elsevier, Amsterdam, 2015)Google Scholar
  47. 47.
    S.R. Zbigniew, W. Janusz, Porous titanium foil by tape casting technique. J. Mater. Process. Technol. 175(1), 358–363 (2006)Google Scholar
  48. 48.
    P. Nu-Young, in Proceedings of the 1st Thailand Metallugy Conference, 15–16 October 2007Google Scholar
  49. 49.
    J. Haidar, S. Gnanarajan, J.B. Dunlop, Direct production of alloys based on titanium aluminides. Intermetallics 17, 651–656 (2009)CrossRefGoogle Scholar
  50. 50.
    A. Khataee, H.M. Flower, D.R.F. West, The alloying of titanium aluminides with ruthenium. Platinum Met. Rev. 33(3), 106–113 (1989)Google Scholar
  51. 51.
    Z. Li, W. Gao, Intermetallics Research Progress (Nova Science Publishers, New York, 2008)Google Scholar
  52. 52.
    A.R.C. Sharman, D.K. Aspinwall, R.C. Dewesb, P. Bowen, Workpiece surface integrity considerations when finish turning gamma titanium aluminide. Wear 249(5), 473–481 (2001)CrossRefGoogle Scholar
  53. 53.
    C.R. Zambaldi, Micromechanical modeling of γ-TiAl based alloys, Ph.D. Thesis, Available from University of Aachen, Germany, 2010Google Scholar
  54. 54.
    S. Znamy, D. Nguyen-Manhz, D.G. Pettiforz, V. Viteky, Atomistic modelling of TiAl I. Bond-order potentials with environmental dependence. Philos. Mag. 83(4), 415–438 (2003)CrossRefGoogle Scholar
  55. 55.
    N.S. Stoloff, V.K. Sikka, Physical Metallurgy and Processing of Intermetallic Compounds (Chapman & Hall, London, 1996)CrossRefGoogle Scholar
  56. 56.
    F. Zhang, S.L. Chen, Y.A. Chang, U.R. Kattner, A thermodynamic description of the Ti–Al system. Intermetallics 5(6), 471–482 (1997)CrossRefGoogle Scholar
  57. 57.
    I.N. Maliutina, H. Si-Mohand, J. Sijobert, P. Bertrand, D.V. Lazurenko, I.A. Bataev, Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy. Surf. Coat. Technol. 319, 136–144 (2017)CrossRefGoogle Scholar
  58. 58.
    J.F. Appel, J.D.H. Paul, M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH, Weinheim, 2011)CrossRefGoogle Scholar
  59. 59.
    S. Fager Franzén, J. Karlsson, γ-Titanium aluminide manufactured by electron beam melting an investigation of microstructural behavior and related mechanical properties (2010),
  60. 60.
    K. Kothari, R. Radhakrishnan, N.M. Wereley, Advances in gamma titanium aluminides and their manufacturing techniques. Prog. Aerosp. Sci. 55, 1–16 (2012)CrossRefGoogle Scholar
  61. 61.
    C. Suryanarayana, Does a disordered γ-TiAl phase exist in mechanically alloyed Ti–Al powders? Intermetallics 3(2), 153–160 (1995)CrossRefGoogle Scholar
  62. 62.
    J.C. Schuster, M. Palm, Reassessment of the binary aluminum–titanium phase diagram. J. Phase Equilibria Diffusion 27(3), 255–277 (2006)CrossRefGoogle Scholar
  63. 63.
    I. Ohnuma, Y. Fujita, H. Mitsui, K. Ishikawa, R. Kainuma, K. Ishida, Phase equilibria in the Ti–Al binary system. Acta Mater. 48(12), 3113–3123 (2000)CrossRefGoogle Scholar
  64. 64.
    E. Bumps, H. Kessler, M. Hansen, Titanium aluminum system. Trans. AIME 194, 609–614 (1952)Google Scholar
  65. 65.
    M. Yan, Fabrication of gamma titanium aluminide alloys by gas tungesten arc welding-based additive layer manufacturing, Ph.D. Thesis, Available from University of Wollongong, Australia, 2015Google Scholar
  66. 66.
    R. Chen, H. Fang, X. Chen, Y. Su, H. Ding, J. Guo, H. Fu, Formation of TiC/Ti2AlC and α2 + γ in in-situTiAl composites with different solidification paths. Intermetallics 81, 9–15 (2017)CrossRefGoogle Scholar
  67. 67.
    S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, S. Weib, Microstructure and mechanical properties of a forged β-solidifying γ TiAl alloy in different heat treatment conditions. Intermetallics 58, 71–83 (2015)CrossRefGoogle Scholar
  68. 68.
    L. Fang, J. Lin, Y. Liang, L. Zhang, J. Yin, X. Ding, Microstructural instability in surface layer of a high Nb–TiAl alloy processed by shot peening following high temperature exposure. Intermetallics 78, 8–16 (2016)CrossRefGoogle Scholar
  69. 69.
    J. Wang, Y. Wang, Y. Liu, J. Li, L. He, C. Zhang, Microstructure evolution in Ni and Ni-superalloy based metallic-intermetallic laminate (MIL) composites. Intermetallics 64, 70–80 (2016)CrossRefGoogle Scholar
  70. 70.
    G. Chen, Y. Peng, G. Zheng, Z. Qi, M. Wang, H. Yu, C. Dong, C.T. Liu, Polysynthetic twinned TiAl single crystals for high-temperature applications. Nat. Mater. 15(8), 876–881 (2016)CrossRefGoogle Scholar
  71. 71.
    K. Hashimoto, M. Kimura, R. Suyama, Alloy design of gamma titanium aluminide intermetallic compound. Nippon Steel Tech. Rep. 62, 98–103 (1994)Google Scholar
  72. 72.
    A.A. Aldoshan, Spark plasma sintering of titanium aluminide intermetallics and its composites, MS Thesis, Available from Oklahoma State University, USA, 2012Google Scholar
  73. 73.
    S.J. Hales, P. Vasquez, Synthesis of nano-crystalline gamma-TiAl materials, in Gamma Titanium Aluminides, ed. by Y.W. Kim, H. Clemens, A.H. Rosenberger (TMS, Warrendale, 2003), pp. 305–310Google Scholar
  74. 74.
    C. Suryanarayana, R. Sundaresan, F.H. Froes, TiAl formation by mechanical alloying. Mater. Sci. Eng A150(1), 117–121 (1992)CrossRefGoogle Scholar
  75. 75.
    K.B. Gerasimov, S.V. Pavlov, Metastable Ti-Al phases obtained by mechanical alloying. J. Alloys Compd. 242(1), 136–142 (1996)CrossRefGoogle Scholar
  76. 76.
    N. Forouzanmehr, F. Karimzadeh, M.H. Enayati, Study on solid-state reactions of nanocrystalline TiAl synthesized by mechanical alloying. J. Alloys Compd. 471(1), 93–97 (2009)CrossRefGoogle Scholar
  77. 77.
    M.R. Farhang, A.R. Kamali, M. Nazarian-Samani, Effects of mechanical alloying on the characteristics of a nanocrystalline Ti–50 at.%Al during hot pressing consolidation. Mater. Sci. Eng. B 168(1), 136–141 (2010)CrossRefGoogle Scholar
  78. 78.
    J.B. Al-Dabbagh, R. Mohd Tahar, M. Ishak, S.A. Harun, Mechanical alloying (MA) of Ti–50%Al (molar fraction) powder by using planetary ball milling. Int. J. Nanoelectron. Mater. 8, 23–32 (2015)Google Scholar
  79. 79.
    F. Abbasi Nargesi, R. Azari Khosroshahi, N. Parvini Ahmadi, Synthesis of nanostructured Ti–45Al–5Cr alloy by mechanical alloying and study of effect of Cr addition on microstructure of TiAl alloy. JE Trans. A Basics 24(2), 123–130 (2011)Google Scholar
  80. 80.
    M. Oehring, T. Klassen, R. Bormann, The formation of metastable Ti–Al solid solutions by mechanical alloying and ball milling. J. Mater. Res. 8(11), 2819–2829 (1993)CrossRefGoogle Scholar
  81. 81.
    H. Yu, D. Zhang, Y. Chen, Z. Liu, Synthesis of nanostructured Gamma-Ti Al based powders and bulk alloys using high energy mechanical milling and HIP. Int. J. Mod. Phys. B 20, 4183–4188 (2006)CrossRefGoogle Scholar
  82. 82.
    S. Kumaran, T. Srinivasa Rao, R. Subramanian, P. Angelo, Nanocrystalline and amorphous structure formation in Ti–Al system during high energy ball milling. Powder Metall. 48(4), 354–357 (2005)CrossRefGoogle Scholar
  83. 83.
    S. Qu, X. Li, Y. Li, L. Hu, E. Wang, Manufacturing a TiAl alloy by high-energy ball milling and subsequent. Reactive sintering. Rare Met. 25, 21–26 (2006)CrossRefGoogle Scholar
  84. 84.
    S. Kennedy, S. Kumaran, T. Srinivasa Rao, Effect of milling on sintering behavior of γ-TiAl by spark plasma sintering. Mater. Manuf. Process. 28, 928–932 (2013)Google Scholar
  85. 85.
    K. Kothari, R. Radhakrishnan, N.M. Wereley, T.S. Sudarshan, Rapid consolidation of gamma titanium aluminide powders attrition milled to submicron scale. Mater. Manuf. Process. 28, 1171–1178 (2013)CrossRefGoogle Scholar
  86. 86.
    H. Huang, P. Virtanen, T. Tiainen, Y. Ji, Synthesis of γ-TiAl based alloy by mechanical alloying and reactive hot isostatic pressing. Int. J. Mater. Eng. Perform. 7(6), 784–788 (1998)CrossRefGoogle Scholar
  87. 87.
    T. Klassen, M. Oehring, R. Bormann, Microscopic mechanisms of metastable phase formation during ball milling of intermetallic TiAl phases. Acta Mater. 45(9), 3935–3948 (1997)CrossRefGoogle Scholar
  88. 88.
    T. Shanmugasundaram, J. Guyon, J.P. Monchoux, A. Hazotte, E. Bouzy, On grain refinement of a γ-TiAl alloy using cryo-milling followed by spark plasma sintering. Intermetallics 66, 141–148 (2015)CrossRefGoogle Scholar
  89. 89.
    R.D.W. Kemmitt, Manganese, in Comprehensive Inorganic Chemistry, ed. by J.C. Bailar, H.J. Emeleus, F. Trotman-Dickenson (Pergamon Press, Oxford, 1973)Google Scholar
  90. 90.
    R.D. Graham, J.P. Quirk, Genotypic differences in tolerance to manganese deficiency, in Proceedings of the International Symposium on Manganese in Soils and Plants, ed. by R.D. Graham, R.J. Hannam, N.C. Uren (Kluwer Academic Publishers, Dordrecht, 1988), pp. 261–276CrossRefGoogle Scholar
  91. 91.
    E.J. Chapman, Philos. Mag. 3, 144 (1852)Google Scholar
  92. 92.
    D.A. Wells, Proc. Arner. Assoc 275 (1851)Google Scholar
  93. 93.
    M. Brant, V.L. Schram, Mammalian manganese metabolism and manganese uptake and distribution in rat hepatocytes, in Manganese in Metabolism and Enzyme Function, ed. by V.L. Schram, F.C. Wedler (Academic Press, Orlando, 1986), pp. 3–16CrossRefGoogle Scholar
  94. 94.
    B. Venugopal, T.D. Luckey, Metal Toxicity in Mammals (Plenum Press, New York, 1978)Google Scholar
  95. 95.
    H.A. Abdel-Ghany, Monitoring of natural radioactivity in manganese ore. Nuclear Physics and Atomic Energy 10(4), 433–436 (2009)Google Scholar
  96. 96.
    V. Kuleshov, Isotope Geochemistry (Elsevier, Amsterdam, 2017)Google Scholar
  97. 97.
    H. Kono, On the ferromagnetic phase in manganese–aluminum system. J. Phys. Soc. Jpn. 13, 1444–1451 (1958)CrossRefGoogle Scholar
  98. 98.
    A.J.J. Koch, P. Hokkeling, M.G.V.D. Sterg, K.J. DeVos, New material for permanent magnets on a base of Mn and Al. J. Appl. Phys. 31, 75S (1960). CrossRefGoogle Scholar
  99. 99.
    J.P. Jakubovics, T.W. Jolly, The effect of crystal defects on the domain structure of Mn–Al alloys. Physica B + C 86, 1357–1365 (1977)Google Scholar
  100. 100.
    M. Betancourt, P. Silva, G. Gonzalez, Effect of milling on the magnetic properties of Al–Mn obtained by mechanical alloying. J. Alloys Compd. 536S(1), S296–S299 (2012)CrossRefGoogle Scholar
  101. 101.
    J.M.D. Coey, New permanent magnets; manganese compounds. J. Phys. Condens. Matter 26, 064211 (2014). CrossRefGoogle Scholar
  102. 102.
    H. Jian, K.P. Skokov, O. Gutfleisch, Microstructure and magnetic properties of Mn–Al–C alloy powders prepared by ball milling. J. Alloys Compd. 622, 524–528 (2015)CrossRefGoogle Scholar
  103. 103.
    Annual Report (No. 1, 2012–2013)Google Scholar
  104. 104.
    J.J. Van Den Broek, H. Donkersloot, G. Van Tendeloo, J. Van Landuyt, Phase transformations in pure and carbon-doped Al45Mn55 alloys. Acta Metall. 27(9), 1497–1504 (1979)CrossRefGoogle Scholar
  105. 105.
    N. Singh, V. Mudgil, K. Anand, A.K. Srivastava, R.K. Kotnala, A. Dhar, Influence of processing on structure property correlations in τ-MnAl rare-earth free permanent magnet material. J. Alloys Compd. 633, 401–407 (2015)CrossRefGoogle Scholar
  106. 106.
    P. Manchanda, A. Kashyap, J.E. Shield, L.H. Lewis, R. Skomski, Magnetic properties of Fe-doped MnAl. J. Magn. Magn. Mater. 365, 88–92 (2014)CrossRefGoogle Scholar
  107. 107.
    J.H. Park, Y.K. Hong, S. Bae, J.J. Lee, J. Jalli, G.S. Abo, N. Neveu, S.G. Kim, C.J. Choi, Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. J. Appl. Phys. 107, 731 (2010). CrossRefGoogle Scholar
  108. 108.
    S. Ruan, C.A. Schuh, Electrodeposited Al–Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57(13), 3810–3822 (2009)CrossRefGoogle Scholar
  109. 109.
    Z. Shao, H. Zhao, J. Zeng, Y. Zhang, W. Yang, Y. Lai, S. Guo, H. Du, C. Wang, Y. Yang, J. Yang, One step preparation of pure τ-MnAl phase with high magnetization using strip casting method. AIP Adv. 7, 056213 (2017). CrossRefGoogle Scholar
  110. 110.
    Q. Zeng, I. Baker, J. Cui, Z. Yan, Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials. J. Magn. Magn. Mater. 308(2), 214–226 (2007)CrossRefGoogle Scholar
  111. 111.
    W.H. Dreizler, A. Menth, Transformation kinetics of the ferromagnetic alloy Mn–Al–C. IEEE Trans. Magn. 80, 534–536 (1980)CrossRefGoogle Scholar
  112. 112.
    K. Kamino, T. Kawaguchi, M. Nagakura, Magnetic properties of MnAl system alloys. IEEE Trans. Magn. 2(3), 506–510 (1966)CrossRefGoogle Scholar
  113. 113.
    Y. Kurtulus, R. Dronskowski, Electronic structure, chemical bonding and spin polarization in ferromagnetic MnAl. J. Solid State Chem. 176(2), 390–399 (2003)CrossRefGoogle Scholar
  114. 114.
    Ö. Acar, Investigation of solid state phase transformation in Manganese–Aluminium alloys, MSc Thesis, Available from Middle East Technical University. Turkey, 2016Google Scholar
  115. 115.
    W. Zheng, H. Mao, X.G. Lu, Y. He, L. Li, M. Selleby, Thermodynamic investigation of the Al–Fe–Mn system over the whole composition and wide temperature ranges. J. Alloys Compd. 742, 1046–1057 (2018)CrossRefGoogle Scholar
  116. 116.
    A. Chaturvedi, R. Yaqub, I. Baker, Microstructure and magnetic properties of bulk nanocrystalline MnAl. Metals 4(1), 20–27 (2014)CrossRefGoogle Scholar
  117. 117.
    W. Lu, J. Niu, T. Wang, K. Xia, Z. Xiang, Y.S. Hong Zhang, S. Yoshimura, H. Saito, Low-energy mechanically milled τ-phase MnAl alloys with high coercivity and magnetization. J. Alloys Compd 675, 163–167 (2016)CrossRefGoogle Scholar
  118. 118.
    P.B. Braun, J.A. Goedkoop, An X-ray and neutron diffraction investigation of the magnetic phase Al0.89Mn1.11. Acta Cryst. 16, 737–740 (1963)CrossRefGoogle Scholar
  119. 119.
    K.J. Kim, K. Sumiyama, K. Suzuki, Ferromagnetic α-Mn-type Mn–Al alloys produced by mechanical alloying. J. Alloys Compd. 217, 48–51 (1995)CrossRefGoogle Scholar
  120. 120.
    S. Ibrahim, A.M. Shamah, Y.M. Abbas, F.F. Hanna, L.K. Marei, A. Hannora, Phase stability in mechanically alloyed Mn–30at.%Al. Egypt J. Solids 28(2), 315–323 (2005)Google Scholar
  121. 121.
    P. Saravanan, V.T.P. Vinod, M. Černík, A. Selvapriya, D. Chakravarty, S.V. Kamat, Processing of Mn–Al nanostructured magnets by spark plasma sintering and subsequent rapid thermal annealing. J. Magn. Magn. Mater. 374, 427–432 (2015)CrossRefGoogle Scholar
  122. 122.
    P. Shunkang, L. Ye, L. Peihao, R. Guanghui, Z. Huaiying, C. Lichun, Microwave absorbing properties of MnAl alloy powder. Rare Met. Mater. Eng. 45(2), 267–271 (2016)CrossRefGoogle Scholar
  123. 123.
    J.G. Lee, X.L. Wang, Z.D. Zhang, C.J. Choi, Magnetic dependence of cyclotron transition absorption in piezoelectric materials based on the quantum transport theory. Thin Solid Films 519(23), 8312–8318 (2011)CrossRefGoogle Scholar
  124. 124.
    K.P. Su, X.X. Chena, H.O. Wang, D.X. Huo, Z.W. Liu, Effect of milling on the structure and magnetic properties in Mn54Al46 flakes prepared by surfactant-assisted ball milling. Mater. Charact. 114, 263–266 (2016)CrossRefGoogle Scholar
  125. 125.
    S. Kojima, T. Ohtani, N. Kato, K. Kojima, Y. Sakamoto, I. Konno, M. Tsukahara, T. Kubo, Crystal transformation and orientation of MnAlC hard magnetic alloy, in AIP (1974)Google Scholar
  126. 126.
    G.A. Fischer, M.L. Rudee, Effect of magnetic annealing on the τ-phase of MnAl thin films. J. Magn. Magn. Mater. 213(3), 335–339 (2000)CrossRefGoogle Scholar
  127. 127.
    T. Saito, Magnetic properties of Mn–Al system alloys produced by mechanical alloying. J. Appl. Phys. 93(10), 8686–8688 (2003)CrossRefGoogle Scholar
  128. 128.
    O. Kohmoto, N. Kageyama, Y. Kageyama, H. Haji, M. Uchida, Y. Matsushima, Magnetic properties of mechanically alloyed Mn–Al–C powders. J. Phys. Conf. Ser. 266, 012016 (2011). CrossRefGoogle Scholar
  129. 129.
    D.C. Crew, P.G. McCormick, R. Street, MnAl and MnAlC permanent magnets produced by mechanical alloying. Scr. Metall. Mater. 32(3), 315–318 (1995)CrossRefGoogle Scholar
  130. 130.
    O. Obi, L. Burns, Y. Chen, T. Fitchorov, S. Kim, K. Hsu, D. Heiman, L.H. Lewis, V.G. Harris, Magnetic and structural properties of heat-treated high-moment mechanically alloyed MnAlC powders. J. Alloys Compd. 582, 598–602 (2014)CrossRefGoogle Scholar
  131. 131.
    K.P. Su, J. Wang, H.O. Wang, D.X. Huo, L.W. Li, Y.Q. Cao, Z.W. Liu, Strain-induced coercivity enhancement in Mn51Al46C3 flakes prepared by surfactant-assisted ball milling. J. Alloys Compd. 640, 114–117 (2015)CrossRefGoogle Scholar
  132. 132.
    G.P. Keeler, Ruthenium Synthesis, Physicochemical Properties and Applications (Nova Science Publishers, New York, 2014)Google Scholar
  133. 133.
    W.P. Griffith, Ruthenium Oxidation Complexes, Catalysis by Metal Complexes (Springer, Berlin, 2011)CrossRefGoogle Scholar
  134. 134.
    C. Claus, Ann. Chem. Phys. 64, 192–197 (1845)CrossRefGoogle Scholar
  135. 135.
    C. Claus, J. Prakt. Chem. 34, 420–438 (1845)CrossRefGoogle Scholar
  136. 136.
    Anon. Philos. Mag. 27, 230–231 (1845)Google Scholar
  137. 137.
    E.A. Seddon, K.R. Seddon, The Chemistry of Ruthenium (Elsevier, Amsterdam, 1984)Google Scholar
  138. 138.
    W.P. Griffith, Spurious platinum metals. Chem Brit. 4, 430–434 (1968)Google Scholar
  139. 139.
    H. Hodrejarv, A. Vaarmann, I. Inno, Heavy metals in roadside. Proc. Estonian Acad. Sci. Chem. 46, 153–167 (1997)Google Scholar
  140. 140.
    W. Obrowski, Die Beständigkeit von Wolfram gegen flûssiges Cer und über CerWolfram-Legierungen. Naturwissenschaften 47, 201 (1960)CrossRefGoogle Scholar
  141. 141.
    W. Obrowski, Alloys of ruthenium with boron, beryllium and aluminium. Metall 17(2), 108–112 (1963)Google Scholar
  142. 142.
    W. Wopershow, C.J. Raub, Metallwissenschaft und Technik. Metalli 33(7), 736 (1979)Google Scholar
  143. 143.
    F. Mucklich, N. Ilic, RuAl and its alloys. Part I. Structure, physical properties, microstructure and processing. Intermetallics 13(1), 5–21 (2005)CrossRefGoogle Scholar
  144. 144.
    I.M. Wolff, Toward a better understanding of ruthenium aluminide. JOM 49(1), 134–139 (1997)CrossRefGoogle Scholar
  145. 145.
    R.L. Fleischer, Boron and off-stoichiometry effects on the strength and ductility of AIRu. Metall. Trans. A 4(1), 227–230 (1993)CrossRefGoogle Scholar
  146. 146.
    K.W. Liu, F. Mücklich, Synthesis of RuAl/ZrO2 nanocomposite by mechanical alloying and subsequent annealing. Scr. Mater. 49(3), 207–212 (2003)CrossRefGoogle Scholar
  147. 147.
    R. Fleischer, D. McKee, Mechanical and oxidation properties of AlRu-based high-temperature alloys. Metall. Mater. Trans. A 24(3), 759–763 (1993)CrossRefGoogle Scholar
  148. 148.
    F. Soldera, N. Ilic, S. Brännström, I. Barrientos, H.A. Gobran, F. Mücklich, Formation of Al2O3 scales on single-phase RuAl produced by reactive sintering. Oxid. Met. 59(5), 529–542 (2003)CrossRefGoogle Scholar
  149. 149.
    M.A. Guitar, H. Aboulfadl, C. Pauly, P. Leibenguth, S. Migot, F. Mücklich, Production of single-phase intermetallic films from Ru–Al multilayers. Surf. Coat. Technol. 244(15), 210–216 (2014)CrossRefGoogle Scholar
  150. 150.
    M.A. Guitar, F. Mucklich, Isothermal oxidation behaviour of nanocrystalline RuAl intermetallic thin films. Oxid. Met. 80(3), 423–436 (2013)CrossRefGoogle Scholar
  151. 151.
    I.M. Wolff, G. Sauthoff, L.A. Cornish, H.D.V. Steyn, R. Coetzee, Structural Intermetallics (The Minerals, Metals & Materials Society, Warrensdale, 1997)Google Scholar
  152. 152.
    D.W. McKee, R.L. Fleischer, High temperature, ordered intermetallic alloys IV, in Materials Research Society Symposium Proceedings, ed. by L.A. Johnson, D.P. Pope, J.O. Stiegler (Materials Research Society, Pittsburg, 1991), pp. 969–974Google Scholar
  153. 153.
    R.L. Fleischer, D.W. McKee, Mechanical and oxidation properties of AlRu-based high-temperature alloys. Metall. Trans. A 24(3), 759–763 (1993)CrossRefGoogle Scholar
  154. 154.
    J.A. Howell, Wnts are guidance cues in anterior-posterior neuronal migration, Ph.D. Thesis, Available from University of California, Berkeley, 2005Google Scholar
  155. 155.
    T.M. Pollock, D.C. Lu, X. Shi, K. Eow, A comparative analysis of low temperature deformation in B2 aluminides. Mater. Sci. Eng. A 317(1), 241–248 (2001)CrossRefGoogle Scholar
  156. 156.
    H.A. Gobran, K.W. Liu, D. Heger, F. Mücklich, Investigation on point defect structure in single phase B2 type RuAl alloys by lattice parameter measurements. Scr. Mater. 49(11), 1097–1102 (2003)CrossRefGoogle Scholar
  157. 157.
    T.D. Boniface, The ruthenium-aluminium system, MSc Thesis, Available from University of the Witwatersrand, Johannesburg, 1994Google Scholar
  158. 158.
    T.D. Boniface, L.A. Cornish, Investigation of the aluminium–ruthenium phase diagram above 25 at.% ruthenium. J. Alloys Compd. 234(2), 275–279 (1996)CrossRefGoogle Scholar
  159. 159.
    N.P. Lyakishev, Phase diagrams of binary metallic systems (Mashinostroenie, Moscow, 1996)Google Scholar
  160. 160.
    E.M. Savitskii, V.P. Polyakova, N.B. Gorina, N.P. Roshan, Metallurgy of Platinum Group Metals (Metallurgiya, Moscow, 1975). (in Russian) Google Scholar
  161. 161.
    S.N. Prins, L.A. Cornish, W.E. Stumpf, B. Sundman, Thermodynamic assessment of the Al–Ru system. Calphad 27(1), 79–90 (2003)CrossRefGoogle Scholar
  162. 162.
    W.G. Jung, O.J. Kleppa, Standard molar enthalpies of formation of MeAl (Me = Ru, Rh, Os, Ir). Metall. Trans. B 23(1), 53–56 (1992)CrossRefGoogle Scholar
  163. 163.
    R.L. Fleischer, Substitutional solutes in AlRu—I. Effects of solute on moduli, lattice parameters and vacancy production. Acta Metall. Mater. 41(3), 863–869 (1993)CrossRefGoogle Scholar
  164. 164.
    A. Borah, Processing and characterisation of ruthenium aluminium alloys, Ph.D. Thesis, Available from University of Guwahati, India, 2006Google Scholar
  165. 165.
    S. Mi, S. Balanetskyy, B. Grushko, A study of the Al-rich part of the Al–Ru alloy system. Intermetallics 11(7), 643–649 (2003)CrossRefGoogle Scholar
  166. 166.
    B. Bax, C. Pauly, P. Leibenguth, K. Woll, F. Mücklic, Synthesis of B2-RuAl coatings on mild steel by laser cladding. Surf. Coat. Technol. 206(19), 3931–3937 (2012)CrossRefGoogle Scholar
  167. 167.
    A.A. Drozdov, A.E. Morozov, K.B. Povarova, Comparative analysis of the effect of mechanical activation in an attritor on the structure and behavior of β-RuAl and β-NiAl alloy powder mixtures during reactive sintering. Russian Metallurgy (Metally) 5(5), 347–353 (2013)CrossRefGoogle Scholar
  168. 168.
    K.E. Mohamed, D. Stover, H.P. Buchkremer, Some reactive processing aspects of high-temperature aluminides Nb3Al and RuAl. J. Mater. Eng. Perform. 6(6), 771–779 (1997)CrossRefGoogle Scholar
  169. 169.
    K.W. Liu, F. Mucklich, R. Birringer, Synthesis of nano-RuAl by mechanical alloying. Intermetallics 9(1), 81–88 (2001)CrossRefGoogle Scholar
  170. 170.
    K.W. Liu, F. Mucklich, Thermal stability of nano-RuAl produced by mechanical alloying. Acta Mater. 49(3), 395–403 (2001)CrossRefGoogle Scholar
  171. 171.
    A. Bora, P.P. Singha, P.S. Robi, A. Srinivasan, Powder metallurgy processing of ruthenium aluminum alloys. J. Mater. Process. Technol. 153–154, 952–957 (2004)CrossRefGoogle Scholar
  172. 172.
    A. Bora, P.S. Robi, A. Srinivasan, Synthesis of nano-crystalline RuAl by mechanical alloying. Met. Mater. Int. 13(4), 293–302 (2007)CrossRefGoogle Scholar
  173. 173.
    K.W. Liu, F. Mucklich, W. Pitschke, R. Birringer, K. Wetzig, Formation of nanocrystalline B2-structured (Ru, Ni)Al in the ternary Ru–Al–Ni system by mechanical alloying and its thermal stability. Mater. Sci. Eng. A 313(1), 187–197 (2001)CrossRefGoogle Scholar
  174. 174.
    E. Hellstern, H.J. Fecht, Z. Fu, W.L. Johnson, Structural and thermodynamic properties of heavily mechanically deformed Ru and AlRu. J. Appl. Phys. 65, 305 (1989)CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Département de Physique, Faculté des SciencesUniversité 20 Août 1955SkikdaAlgeria

Personalised recommendations