Skip to main content
Log in

Electrical Discharge Machining Performance of Deep Cryogenically Treated Inconel 825 Superalloy: Emphasis on Surface Integrity

  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Electrical discharge machining performance of deep cryogenically treated Inconel 825 superalloy was assessed and compared to that of normal workpiece. Machining performance was evaluated in purview of surface integrity which articulated studies on morphology and topography of the EDMed surface. Severity of surface cracking was found relatively less on the machined specimen of cryogenically treated workpiece (CTW) while comparing non-treated workpiece. Moreover, machined specimen of CTW exhibited formation of tiny white layer. Other topographical measures including material migration, surface residual stress, and micro-indentation hardness of the machined specimen were analyzed. Effects of cryogenic treatment of the workpiece followed by EDM operation were discussed emphasizing on metallurgical aspects of the machined surface. Moreover, effects of cooling rate set for the cryogenic treatment cycle were also investigated on influencing EDM performance of CTW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. E.O. Ezugwu, Key improvements in the machining of difficult-to-cut aerospace superalloys. Int. J. Mach. Tools Manuf 45(12–13), 1353–1367 (2005)

    Article  Google Scholar 

  2. I.A. Choudhury, M.A. El-Baradie, Machinability of nickel-base super alloys: a general review. J. Mater. Process. Technol. 77(1–3), 278–284 (1998)

    Article  Google Scholar 

  3. G. Rajyalakshmi, P.V. Ramaiah, Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. Int. J. Adv. Manuf. Technol. 69(5), 1249–1262 (2003)

    Google Scholar 

  4. T.R. Newton, S.N. Melkote, T.R. Watkins, R.M. Trejo, L. Reister, Investigation of the effect of process parameters on the formation and characteristics of recast layer in wire-EDM of Inconel 718. Mater. Sci. Eng. A 513–514, 208–215 (2009)

    Article  Google Scholar 

  5. M. Ay, U. Çaydaş, A. Hasçalık, Optimization of micro-EDM drilling of Inconel 718 super alloy. Int. J. Adv. Manuf. Technol. 66(5), 1015–1023 (2013)

    Article  Google Scholar 

  6. M.Y. Lin, C.C. Tsao, C.Y. Hsu, A.H. Chiou, P.C. Huang, Y.C. Lin, Optimization of micro milling electrical discharge machining of Inconel 718 by Grey–Taguchi method. Trans. Nonferrous Metals Soc. China 23(3), 661–666 (2013)

    Article  Google Scholar 

  7. S. Dhanabalan, K. Sivakumar, C.S. Narayanan, Analysis of form tolerances in electrical discharge machining process for Inconel 718 and 625. Mater. Manuf. Process. 29(3), 253–259 (2014)

    Article  Google Scholar 

  8. V. Agarwal, S.S. Khangura, R.K. Garg, Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. Int. J. Adv. Manuf. Technol. 79(1–4), 31–47 (2015)

    Article  Google Scholar 

  9. L. Li, Z.Y. Li, X.T. Wei, X. Cheng, Machining characteristics of Inconel 718 by sinking-EDM and wire-EDM. Mater. Manuf. Process. 30(8), 968–973 (2015)

    Article  Google Scholar 

  10. Z. Chen, J. Moverare, R.L. Peng, S. Johansson, Surface integrity and fatigue performance of Inconel 718 in wire electrical discharge machining. Procedia CIRP 45, 307–310 (2016)

    Article  Google Scholar 

  11. C.B. Yang, C.G. Lin, H.L. Chiang, C.C. Chen, Single and multi-objective optimization of Inconel 718 nickel-based superalloy in the wire electrical discharge machining. Int. J. Adv. Manuf. Technol. 93(9–12), 3075–3084 (2017)

    Article  Google Scholar 

  12. J. Holmberg, A. Wretland, J. Berglund, T. Beno, Surface integrity after post processing of EDM processed Inconel 718 shaft. Int. J. Adv. Manuf. Technol. (2017). https://doi.org/10.1007/s00170-017-1342-6

    Google Scholar 

  13. Y. Shen, Y. Liu, H. Dong, K. Zhang, L. Lv, X. Zhang, X. Wu, C. Zheng, R. Ji, Surface integrity of Inconel 718 in high-speed electrical discharge machining milling using air dielectric. Int. J. Adv. Manuf. Technol. 90(1–4), 691–698 (2017)

    Article  Google Scholar 

  14. D. Das, A.K. Dutta, K.K. Ray, On the enhancement of wear resistance of tool steels by cryogenic treatment. J. Philos. Mag. Lett. 88(11), 801–811 (2008)

    Article  Google Scholar 

  15. S. Kumar, A. Batish, R. Singh, T.P. Sing, A hybrid Taguchi artificial neural network approach to predict surface roughness during electric discharge machining of titanium alloys. J. Mech. Sci. Technol. 28(7), 2831–2844 (2014)

    Article  Google Scholar 

  16. S. Kumar, R. Singh, A. Batish, T.P. Singh, Modeling the tool wear rate in powder mixed electro-discharge machining of titanium alloys using dimensional analysis of cryogenically treated electrodes and workpiece. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 231, 271–282 (2015)

    Article  Google Scholar 

  17. S.S. Gill, J. Singh, Effect of deep cryogenic treatment on machinability of titanium alloy (Ti-6246) in electric discharge drilling. Mater. Manuf. Process. 25(6), 378–385 (2010)

    Article  Google Scholar 

  18. N.S. Kalsi, R. Sehgal, V.S. Sharma, Cryogenic treatment of tool materials: a review. Mater. Manuf. Process. 25(10), 1077–1100 (2010)

    Article  Google Scholar 

  19. M.M. Sundaram, Y. Yildiz, K.P. Rajurkar, Experimental study of the effect of cryogenic treatment on the performance of electro-discharge machining, in International Manufacturing Science and Engineering Conference (American Society of Mechanical Engineers, 2009), pp. 215–222

  20. S. Abdulkareem, A.A. Khan, M. Konneh, Reducing electrode wear ratio using cryogenic cooling during electrical discharge machining. Int. J. Adv. Manuf. Technol. 45(11–12), 1146–1151 (2009)

    Article  Google Scholar 

  21. D.S. Nadig, V. Ramakrishnan, P. Sampathkumaran, C.S. Prashanth, Effect of cryogenic treatment on thermal conductivity properties of copper. AIP Conf. Proc. 1435(1), 133–139 (2012)

    Article  Google Scholar 

  22. A. Bensely, A. Prabhakaran, D.M. Lal, G. Nagarajan, Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment. Cryogenics 45(12), 747–754 (2006)

    Article  Google Scholar 

  23. D. Das, A.K. Dutta, V. Toppo, K.K. Ray, Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 Steel. Mater. Manuf. Process. 22(4), 474–480 (2007)

    Article  Google Scholar 

  24. A. Akhbarizadeh, A. Shafyei, M.A. Golozar, Effects of cryogenic treatment on wear behavior of D6 tool steel. Mater. Des. 30(8), 3259–3264 (2009)

    Article  Google Scholar 

  25. R. Khanna, H. Singh, Comparison of optimized settings for cryogenic-treated and normal D-3 steel on WEDM using grey relational theory. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 230, 219–232 (2014)

    Google Scholar 

  26. S. Kumar, R. Singh, A. Batish, T.P. Singh, R. Singh, Investigating surface properties of cryogenically treated titanium alloys in powder mixed electric discharge machining. J. Braz. Soc. Mech. Sci. Eng. (2016). https://doi.org/10.1007/s40430-016-0639-y

    Google Scholar 

  27. S. Kumar, A. Batish, R. Singh, A. Bhattacharya, Effect of cryogenically treated copper-tungsten electrode on tool wear rate during electro-discharge machining of Ti–5Al–2.5Sn alloy. Wear 386–387, 223–229 (2017)

    Article  Google Scholar 

  28. Rahul, D.K. Mishra, S. Datta, M. Masanta, Effects of tool electrode on EDM performance of Ti–6Al–4V. Silicon 10(5), 2263–2277 (2018)

    Article  Google Scholar 

  29. S. Prabhu, B.K. Vinayagam, AFM surface investigation of Inconel 825 with multi wall carbon nano tube in electrical discharge machining process using Taguchi analysis. Arch. Civ. Mech. Eng. 11(1), 149–169 (2011)

    Article  Google Scholar 

  30. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison Wesley, Boston, 1978), p. 470

    Google Scholar 

  31. C.J. Isaak, W. Reitz, The effects of cryogenic treatment on the thermal conductivity of GRCop-84. Mater. Manuf. Process. 23(1), 82–91 (2008)

    Article  Google Scholar 

  32. M. Merklein, K. Andreas, U. Engel, Influence of machining process on residual stresses in the surface of cemented carbides. Proceedia Eng. 19, 252–257 (2011)

    Article  Google Scholar 

  33. Datta S. Rahul, B.B. Biswal, S.S. Mahapatra, Electrical discharge machining of Inconel 825 using cryogenically treated copper electrode: emphasis on surface integrity and metallurgical characteristics. J. Manuf. Process. 26, 188–202 (2017)

    Article  Google Scholar 

  34. Y.P.V. Subbaiah, P. Prathap, K.T.P. Reddy, Structural, electrical and optical properties of ZnS films deposited by close-spaced evaporation. Appl. Surf. Sci. 253(5), 2409–2415 (2006)

    Article  Google Scholar 

  35. P. Singh, A. Kumar, A. Kaushal, D. Kaur, A. Pandey, R.N. Goyal, In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition. Bull. Mater. Sci. 31(3), 573–577 (2008)

    Article  Google Scholar 

  36. V.S. Vinila, R. Jacob, A. Mony, H.G. Nair, S. Issac, S. Rajan, A.S. Nair, J. Isac, XRD studies on nano crystalline ceramic superconductor PbSrCaCuO at different treating temperatures. Cryst. Struct. Theory Appl. 3(1), 1–9 (2014)

    Google Scholar 

  37. R. Jacob, H.G. Nair, J. Isac, Structural and morphological studies of nanocrystalline ceramic BaSr0.9Fe0.1TiO4. Int. Lett. Chem. Phys. Astron. 41, 100–117 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Datta.

Appendix

Appendix

Sample calculation for determining crystallite size:

With reference to Table 2, the crystallite size ‘as-received’ workpiece was computed.

$$ L = \frac{K\lambda }{{\beta_{L} \cos \theta }} $$
$$ K = 0.9\; \left( {Scherrer\;{\text{constant}}} \right) $$
$$ \lambda = {\text{radiation wavelength}}\; (\lambda_{\text{Co}} = 1.7906\,{\AA}\;{\text{for}}\;{\text{CoK}}_{\alpha } ) $$
$$ \beta_{L} \left( {\text{FWHM}} \right) = 0.00294\;{\text{rad}} $$
$$ {\text{Crystallite}}\;{\text{size:}}\;L = \frac{0.9 \times 1.7906 \times 0.1}{{0.00294\cos \left( {\frac{50.8245}{2}} \right)^{{^\circ }} }} = 60.686\,{\text{nm}} $$
$$ {\text{N}} . {\text{B:}}\;1\,{\AA} = 0.1\,{\text{nm}};\quad 1^{{^\circ }} = 0.0175\,{\text{rad}}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahul, Datta, S. Electrical Discharge Machining Performance of Deep Cryogenically Treated Inconel 825 Superalloy: Emphasis on Surface Integrity. Metallogr. Microstruct. Anal. 8, 212–225 (2019). https://doi.org/10.1007/s13632-019-00519-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00519-2

Keywords

Navigation