Advertisement

Metallography, Microstructure, and Analysis

, Volume 7, Issue 5, pp 533–541 | Cite as

Development of an Oxidation Method for Prior Austenite Grain Boundary Revelation

  • Geraldo FariaEmail author
  • Rogério Cardoso
  • Paulo Moreira
Technical Article
  • 140 Downloads

Abstract

The prior austenite grain size is a very important quantitative parameter which has a great influence on steel final microstructure and properties. Therefore, its measurement is a useful metallographic tool. To measure the austenitic grain size, it is necessary to reveal the prior austenitic grain boundaries by applying contrast methods. The technical literature reports many limitations to achieve satisfactory results using known methods that are, generally, susceptible to steel chemical composition and processing routes. In this context, this study proposed an oxidation method to reveal the prior austenite grain boundaries in different steel grades. This method was evaluated in the samples of AISI 4340 and AISI 1030 steels. Aiming to confirm the proposed technique efficiency, a parallel and classical method, based on picric acid etching, was applied to same steels. In the suggested oxidation method, the samples were mechanically ground, polished, and then austenitized in an argon atmosphere with low oxygen partial pressure. The obtained results confirm the success of the proposed method for both studied steels.

Keywords

Prior austenite grain boundary Oxidation etching Revealing alternative method 

Notes

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support.

References

  1. 1.
    X. Li, X. Ma, S.V. Subramanian, C. Shang, R.D.K. Misra, Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater. Sci. Eng. A 616, 141–147 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, B. Hwang, The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 122, 199–206 (2017)CrossRefGoogle Scholar
  3. 3.
    H. Zhao, B.P. Wynne, E.J. Palmiere, Effect of austenite grain size on the bainitic ferrite morphology and grain refinement of a pipeline steel after continuous cooling. Mater. Charact. 123, 128–136 (2017)CrossRefGoogle Scholar
  4. 4.
    B. Ravi Kumar, N.K. Patel, K. Mukherje, M. Walunj, G.K. Mandal, T. Venugopalan, Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel. Mater. Sci. Eng. A 685, 187–193 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Li, P. Wu, R. Yang, S. Zhao, S. Chen, X. Cao, X. Wang, Nb segregation at prior austenite grain boundaries and defects in high strength low alloy steel during cooling. Mater. Des. 115, 165–169 (2017)CrossRefGoogle Scholar
  6. 6.
    S.-J. Lee, Y.-K. Lee, Prediction of austenite grain growth during austenitization of low alloy steels. Mater. Des. 29(9), 1840–1844 (2008)CrossRefGoogle Scholar
  7. 7.
    V. Sinha, E.J. Payton, M. Gonzales et al., Delineation of prior austenite grain boundaries in a low-alloy high-performance steel. Metallogr. Microstruct. Anal. 6, 610–618 (2017).  https://doi.org/10.1007/s13632-017-0403-4 CrossRefGoogle Scholar
  8. 8.
    K.S. Cho, H.S. Sim, J.H. Kim, J.H. Choi, K.B. Lee, H.R. Yang, H. Kwon, A novel etchant for revealing the prior austenite grain boundaries and matrix information in high alloy steels. Mater. Charact. 59(6), 786–793 (2008)CrossRefGoogle Scholar
  9. 9.
    D. San Martin, Y. Palyzdar, R.C. Cochrane, R.M.D. Brydson, A.J. Scott, Application of Nomarski interference contrast microscopy to highlight the prior austenite grain boundaries revealed by thermal etching. Mater. Charact. 61(5), 584–588 (2010)CrossRefGoogle Scholar
  10. 10.
    C. García de Andrés, M.J. Bartolome, C. Capdevila, D. San Martin, F.G. Caballero, V.H. López, Metallographic technics for the determination of the austenite grain size in medium-carbon microalloyed steels. Mater. Charact. 46(5), 389–398 (2001)CrossRefGoogle Scholar
  11. 11.
    D. San Martin, P.E.J.R.D. del Castillo, E. Peekstok, S. van der Zwaag, A new etching route for revealing the austenite grain boundaries in an 11.4% Cr precipitation hardening semi-austenitic stainless steel. Mater. Charact. 58(5), 455–460 (2007)CrossRefGoogle Scholar
  12. 12.
    J. Reiter, C. Bernhard, H. Presslinger, Austenite grain size in continuous casting process: metallographic methods and evaluation. Mater. Charact. 59(6), 737–746 (2008)CrossRefGoogle Scholar
  13. 13.
    A.W. Brewer, K.A. Erven, G. Krauss, Etching and image analysis of prior austenite grain boundaries in hardened steels. Mater. Charact. 27(1), 53–56 (1991)CrossRefGoogle Scholar
  14. 14.
    W.-D. Cao, X.-P. Lu, A SEM (scanning electron microscopy)-based method to evaluate impurity segregation to prior austenite grain boundaries in high strength steels. J. Mater. Sci. 24(4), 1368–1372 (1988)CrossRefGoogle Scholar
  15. 15.
    S. Vazehrad, J. Elfsberg, A. Diószegi, Study of microstructure and silicon segregation in cast iron using color etching and electron microprobe analysis. Mater. Charact. 104, 132–138 (2015)CrossRefGoogle Scholar
  16. 16.
    Q.-Y. Sha, G.-J. Huang, J. Guan, X.-J. Ma, D.-H. Li, A new route for identification of precipitates on Austenite grain boundary in an Nb-V-Ti microalloyed steel. J. Iron. Steel Res. Int. 18(8), 53–57 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Nasim, B.C. Edwards, E.A. Wilson, A study of grain boundary embrittlement in an Fe-8%Mn alloy. Mater. Sci. Eng. A 281(1–2), 56–67 (2000)CrossRefGoogle Scholar
  18. 18.
    Y.J. Li, D. Ponge, P. Choi, D. Raabe, Segregation of boron at prior austenite grain boundaries in an quenched martensitic steel studied by atom probe tomography. Scr. Mater. 96, 13–16 (2015)CrossRefGoogle Scholar
  19. 19.
    M.-W. Lui, I. Le May, Etching of prior austenite grain boundaries in AISI 4140 steel. Metallography 4(5), 443–450 (1971)CrossRefGoogle Scholar
  20. 20.
    D.R. Barraclough, Etching of prior austenite grain boundaries in martensite. Metallography 6(6), 465–472 (1973)CrossRefGoogle Scholar
  21. 21.
    A. Brownrigg, P. Curcio, R. Boelen, Etching of prior austenite grain boundaries in martensite. Metallography 8(6), 529–533 (1975)CrossRefGoogle Scholar
  22. 22.
    C. García de Andrés, F.G. Caballero, C. Capdevila, D. San Martin, Revealing austenite grain boundaries by thermal etching: advantages and disadvantages. Mater. Charact. 49(2), 121–127 (2002)CrossRefGoogle Scholar
  23. 23.
    T.V. Soshima, A.A. Zisman, E.I. Khlusova, Revelation of former austenite grains by thermal etching in a vacuum with low-carbon steel TMT steel. Metallurgist 57(1–2), 128–136 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Palizdar, D. San Martin, M. Ward, R.C. Cochrane, R. Brydson, A.J. Scott, Observation of thermally etched grain boundaries with the FIB/TEM technique. Mater. Charact. 84, 28–33 (2013)CrossRefGoogle Scholar
  25. 25.
    N.S. Lim, C.W. Bang, S. Das et al., Influence of tempering temperature on both the microstructural evolution and elemental distribution in AISI 4340 steels. Met. Mater. Int. 18, 87–94 (2012).  https://doi.org/10.1007/s12540-012-0011-4 CrossRefGoogle Scholar
  26. 26.
    F. Josefsson, Development of a quantitative method for grain size measurement using EBSD. Master of Science Thesis, Available from Royal Institute of Technology Library, Stockholm. Thesis completed (2012)Google Scholar
  27. 27.
    ASTM: E1382–97, Standard test methods for determining average grain size using semiautomatic and automatic image analysis (ASTM International, West Conshohocken, 2015), p. 2015Google Scholar
  28. 28.
    Y.N. Gornostyrev, V.N. Urtsev, M.K. Zalalutdinov, P. Entel, A.V. Kaptsan, A.R. Kuznetsov, Reconstruction of grain boundaries during austenite-ferrite transformation. Scr. Mater. 53, 153–158 (2005)CrossRefGoogle Scholar
  29. 29.
    X.-Y. Liu, J. Kameda, J.W. Anderegg, S. Takasi, K. Abiko, C.J. McMahon Jr., Hydrogen-induced cracking in a very-high-purity high strength steel. Mater. Sci. Eng. A 492(1–2), 218–220 (2008)CrossRefGoogle Scholar
  30. 30.
    P.J. Felfer, C.R. Killmore, J.G. Willians, K.R. Carpenter, S.P. Ringer, J.M. Cairney, A quantitative atom probe study of the Nb excess at prior austenite grain boundaries in a Nb microalloyed strip-cast steel. Acta Mater. 60(13–14), 5049–5055 (2012)CrossRefGoogle Scholar
  31. 31.
    S.M. Bruemmer, M.J. Olszta, M.B. Toloczko, D.K. Schreiber, Grain boundary selective oxidation and intergranular stress corrosion crack growth of high-purity nickel binary alloys in high-temperature hydrogenated water. Corros. Sci. 131, 310–323 (2018)CrossRefGoogle Scholar
  32. 32.
    Y. Fushiwake, Y. Nagataki, H. Nagano, W. Tanimoto, Y. Sugimoto, Influence of Fe oxidation on selective oxidation behavior of Si and Mn added in high strength sheet steel. ISIJ Int. 54(3), 664–670 (2014)CrossRefGoogle Scholar
  33. 33.
    S. Taniguchi, K. Yamamoto, D. Megumi, T. Shibata, Characteristics of scale/substrate interface area of Si-containing low-carbon steels at high temperatures. Mater. Sci. Eng. A 308(1–2), 250–257 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2018

Authors and Affiliations

  1. 1.Departamento de Engenharia Metalúrgica e de Materiais, Escola de MinasUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations