Metallography, Microstructure, and Analysis

, Volume 7, Issue 2, pp 103–132 | Cite as

A Metallographic Review of 3D Printing/Additive Manufacturing of Metal and Alloy Products and Components

  • L. E. Murr


Applications and examples of light and electron micrographs illustrating microstructures, which describe metallurgical phenomena in 3D printing/additive manufacturing of metal and alloy products and components, are presented along with extensive process and processing parameter descriptions and review. Examples include microstructures that have defined turbine blade fabrication and optimization over the past half century, including contemporary electron beam melting fabrication of turbine blade alloys and other novel microstructures and architectures, which result from layer by layer, non-equilibrium melt solidification and epitaxial growth involving powder bed laser and electron beam fabrication. Phase transformations and second-phase formation by rapid cooling in metal and alloy components fabricated by laser and electron beam melting technologies are illustrated for a range of high-temperature materials. Using a range of examples, the advantages of fabricating complex (especially porous) biomedical and related commercial products are described. Prospects for future developments of direct 3D metal and alloy droplet printing, as a key component of the digital factory of the future, are described. This technology is compared with more conventional solidification and powder bed layer building thermo-kinetics, especially in the context of large structure and component fabrication.


Metal additive manufacturing (AM) Laser and electron beam melting Metal droplet deposition 3D printing Microstructures and mechanical properties 



The author is grateful for contributions to this review by many students and colleagues over the past 50 years. Many of these have been acknowledged in the figure captions and other references in the narrative. Special thanks to Dr. Chris Bagnall who critically reviewed the manuscript and contributed to valuable insights.


  1. 1.
    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int. Mater. Rev. 57(3), 133–164 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Mellor, L. Hao, D. Zhang, Additive manufacturing: a framework for implementation. Int. J. Prod. Econ. 149, 194–201 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Zhai, D.A. Lados, J.I. Lagoy, Additive manufacturing: making imagination the major limitation. JOM 6, 808–816 (2014)CrossRefGoogle Scholar
  4. 4.
    W.E. Frazier, Metal additive manufacturing: a review. J. Mater. Eng. Perform. 23, 1917–1928 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Adv. Manuf. Technol. 81(1), 465–481 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Klahn, B. Leutenecker, M. Mebold, Design strategies for the process of additive manufacturing. Procedia CIRP 36, 230–235 (2015)CrossRefGoogle Scholar
  7. 7.
    E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure and properties. Prog. Mater Sci. 74, 401–477 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Das, D.C. Dowrell, S.S. Babu, Metallic materials for 3D printing. MRS Bull. 41(10), 729–741 (2016)CrossRefGoogle Scholar
  9. 9.
    D.C. Bourell, Perspectives on additive manufacturing. Ann. Rev. Mater. Res. 46, 1–18 (2016)CrossRefGoogle Scholar
  10. 10.
    L.E. Murr, S.J. Li, Electron beam manufacturing of high-temperature metals. MRS Bull. 41, 752–757 (2016)CrossRefGoogle Scholar
  11. 11.
    L.E. Murr, Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J. Mater. Sci. Technol. 32, 987–995 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Ford, M. Despeisse, Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J. Clean. Prod. 137, 1573–1587 (2016)CrossRefGoogle Scholar
  13. 13.
    D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016)CrossRefGoogle Scholar
  14. 14.
    W.J. Sames, F.A. List, S. Pannela, R.R. Dehoff, S.S. Babu, The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61(5), 315–360 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Thomson, D. McNally, I. Maskery, R.M. Leach, X-ray computed tomography and additive manufacturing in medicine: a review. Int. J. Metrol. Qual. Eng. 8, 17–42 (2017)CrossRefGoogle Scholar
  16. 16.
    A.B. Badiru, V.V. Valencia, D. Liu (eds.), Additive manufacturing handbook: product development for the defense industry (CRC Press/Taylor & Francis Group, Boca Raton, 2017)Google Scholar
  17. 17.
    N.T. Abonlkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311–319 (2017)CrossRefGoogle Scholar
  18. 18.
    C. Wen (ed.), Metallic Foam Bone (Woodhead Publishing/Elsevier, Duxford, 2017)Google Scholar
  19. 19.
    L.E. Murr, W.L. Johnson, 3D metal droplet printing development and advanced materials additive manufacturing. J. Mater. Res. Technol. 6(1), 77–89 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Wohlers, T. Caffrey, Additive MANUFACTURING: THE state of the industry. Adv. Manuf. Org (Soc. Manuf. Eng. Magazine), May, 45–52 (2016)Google Scholar
  21. 21.
    L.E. Murr, Metallurgy of additive manufacturing: examples from electron beam melting. Add. Manuf. 5, 40–53 (2015)Google Scholar
  22. 22.
    L E. Murr, Handbook of Materials Structures, Properties, Processing and Performance Vols. 1 & 2, Springer, Heidelberg (2015)Google Scholar
  23. 23.
    L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, Contributions of light microscopy to contemporary materials characterization: The new directional solidification. Metallog. Microstruct. Anal. 1, 45–55 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Orme, E. P. Muntz, Method and apparatus for droplet steam manufacturing. U.S. Patent Publication No. US5226948A; publication date: July 13, (1990)Google Scholar
  25. 25.
    W. A. Harkness, J. H. Goldschmid, Free-form spatial 3D printing using part levitation. U.S. patent publication No. US2016/0031156Al, published Feb. 4, (2016)Google Scholar
  26. 26.
    W.L. Johnson, L.E. Murr, M. Halpin, P. Frantz, Additive manufacturing systems and methods. U.S. Provisional Patent Application No. 62308821, March 15, (2016)Google Scholar
  27. 27.
    G.F. Deyer, D. Deyer, Surface phenomena in fusion welding processes (CRC Press/Taylor & Francis Group, London, 2005)Google Scholar
  28. 28.
    H. Shultz, Electron beam welding (Woodhead Publishing/The Welding Institute, Cambridge, 1993)Google Scholar
  29. 29.
    J.W. Hill, M.J. Lee, I.J. Spalding, Surface treatments by laser. Optical Laser Technol. 6(6), 276–278 (1974)CrossRefGoogle Scholar
  30. 30.
    R. Vilar, Laser cladding. J. Laser Applic. 11, 64–80 (1999)CrossRefGoogle Scholar
  31. 31.
    A.J. Herbert, Solid object generation. J. Appl. Photo. Eng. 8(4), 185–188 (1982)Google Scholar
  32. 32.
    S. Ashley, Rapid prototyping systems. Mech. Eng. 113(4), 34–43 (1991)Google Scholar
  33. 33.
    D.C. Bourell, J.J. Beaman, Chronology and current processes for freeform fabrication. J. Jpn. Soc. Powder Metal. 50(11), 981–991 (2003)CrossRefGoogle Scholar
  34. 34.
    D.M. Keicher, J.E. Smugeresky, J.A. Romero, M.L. Griffith, L.D. Harwell, Using laser engineered net shaping (LENS) process to produce complex components from a CAD solid model. Proc. SPIE 2293, 91–97 (1997)CrossRefGoogle Scholar
  35. 35.
    W. Hofmeister, M. Griffith, Solidification in direct metal deposition by LENS processing. JOM 53(9), 30–34 (2001)CrossRefGoogle Scholar
  36. 36.
    P. Ding, Z. Pan, D. Caluri, H. Li, Wire-feed additive developments and future interests. Int. J. Adv. Manuf. Technol. 81(1), 465–480 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Basak, R. Acharya, S. Das, Additive manufacturing of single-crystal Superalloy CMSX-4 through scanning laser epitaxy: computational, modeling experimental process development and process parameter optimization. Metall. Mater. Trans. A 47(8), 3845–3859 (2016)CrossRefGoogle Scholar
  38. 38.
    A. Basak, S. Das, Epitaxy and microstructure evolution in metal additive manufacturing. Ann. Rev. Mater. Res. 46, 125–149 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Meteyer, X. Xu, N. Perry, Y.F. Zhao, Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc. CIRP 15, 19–25 (2014)CrossRefGoogle Scholar
  40. 40.
    T. Wohlers, T. Garnet, History of additive manufacturing. Wohlers Report (Wohlers Associates Co, Fort Collins, 2014)Google Scholar
  41. 41.
    H.E. Cline, T.R. Anthony, Heat treating and melting material with a scanning laser beam or electron beam. J. Appl. Phys. 49, 3895–3900 (1997)Google Scholar
  42. 42.
    R. Frigola, O.A. Harrysson, T.J. Horn, H.A. West, R.L. Aman, J.M. Rigsbee, D.A. Ramirez, L.E. Murr, F. Medina, R.B. Wicker, E. Rodriguez, Fabricating copper components with electron beam melting. Adv. Mater. Processes July, 20–24, (2014)Google Scholar
  43. 43.
    L.E. Murr, E. Martinez, J. Hernandez, S. Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo, Microstructures and properties of 17-4 pH stainless steel fabricated by selective laser melting. J. Mater. Res. Technol. 1(3), 167–177 (2012)CrossRefGoogle Scholar
  44. 44.
    S.M. Gaytan, L.E. Murr, F. Medina, E. Martinez, M.I. Lopez, R.B. Wicker, Advanced metal powder based manufacturing of complex components by electron beam melting. Mater. Technol. 24(3), 180–190 (2009)CrossRefGoogle Scholar
  45. 45.
    J.P. Kruth, G. Levy, F. Klocke, T.H.C. Childs, Consolidation phenomena in laser and powder bed based layered manufacturing. CIRP Ann. Manuf. Technol. 56, 730–759 (2007)CrossRefGoogle Scholar
  46. 46.
    N. Read, W. Wang, K. Essa, M.M. Attallah, Selective laser melting of AlSi10 Mg alloy: process optimization and mechanical properties development. Mater. Dev. 65, 417–424 (2015)CrossRefGoogle Scholar
  47. 47.
    T.D. Bennett, D.J. Krajnovich, C.P. Grigorspoulos, P. Baumgart, A.C. Tam, Marangori Mechanism in pulsed laser texturing of magnetic hand discs. J. Heat Transfer 119(3), 589–596 (1997)CrossRefGoogle Scholar
  48. 48.
    Y. Han, W. Lu, T. Jarvis, J. Shurrinton, X. Wu, Investigation on other microstructure of direct laser additive manufacturing of Ti–6Al–4V alloy. Mater. Res. 18(1), 8 pp (2015)Google Scholar
  49. 49.
    I. Yadroitsev, P. Bertrand, I. Smurov, Parametric analysis of the selective laser melting process. Appl. Surface Sci. 253(19), 8064–8069 (2007)CrossRefGoogle Scholar
  50. 50.
    C.L. Qiu, G.A. Ravi, C. Danu, A. Ranson, S. Dilworth, M.M. Attallah, Fabrication of large Ti–6Al–4V structures by direct laser deposition. J. Alloys Compounds 629, 351–361 (2015)CrossRefGoogle Scholar
  51. 51.
    M. Yan, P. Yu, An overview of densification, microstructure and mechanical property of additive manufactured Ti–6Al–4V-comparison among selective laser melting, electron beam melting and laser metal deposition and selective laser sintering with conventional powder. Chap. 5, in Sintering Techniques of Materials, ed. by A. Lakshmanan (Rijeka, Croatia, Intech, 2015), pp. 77–106Google Scholar
  52. 52.
    F. Medina, L.E. Murr, R.W. Wicker, S.M. Gaytan, Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting, U.S. Patent filed May 10, 2010 (publication U.S. 2010/0291401A1; Nov. 18, 2010. Patent No. US 8,828,311B2, Sept. 9, (2014)Google Scholar
  53. 53.
    D. A. Bales, A. Klucha, G.M. Dolansky, Uber-cooled turbine section component made by additive manufacturing. U.S. Patent Application No. US 20140169981A1, June 14, (2014)Google Scholar
  54. 54.
    G. Das, L. Cerratescu, D.M. Shah, Method for preparation of a Superalloy having a crystallographic texture controlled microstructure by electron beam melting. U.S. Patent Publication No. EP3015706A2—Sept. 14, 2016; filing date Oct. 28, (2014)Google Scholar
  55. 55.
    A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.W. Wicker, Joining Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Mater. Des. 94, 17–27 (2016)CrossRefGoogle Scholar
  56. 56.
    L.E. Murr, E. Martinez, S.M. Gaytan, D.A. Ramirez, B.I. Machado, P.W. Shindo, J.L. Martinez, F. Medina, J. Wooten, D. Ciscel, U. Ackelid, R.B. Wicker, Microstructural architecture, microstructures, and mechanical properties of a nickel-base Superalloy fabricated by electron beam melting. Metall. Mater. Trans. A 42A, 3491–3508 (2011)CrossRefGoogle Scholar
  57. 57.
    A. Uriando, M. Esperm-Miguez, S. Perinpanayagam, The present and future of additive manufacturing in the aerospace sector: a review of important aspects. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 229(11), 2132–2147 (2015)CrossRefGoogle Scholar
  58. 58.
    M. Seifi, M. Gorelik, J. Waller, N. Hrabe, N. Shamsaci, S. Dariewicz, J.J. Lewandowski, Progress towards metal additive manufacturing standardization to support qualification and certification. JOM 69(3), 439–455 (2017)CrossRefGoogle Scholar
  59. 59.
    L.E. Murr, Interfacial Phenomena in Metals and Alloys (Addison-Wesley, Reading, 1975)Google Scholar
  60. 60.
    M. Orme, E.P. Muntz, A new technique for producing highly uniform droplet stream over an extended range of disturbance wave number. Rev. Sci. Instrum. 58, 279–284 (1978)CrossRefGoogle Scholar
  61. 61.
    M. Orme, On the genesis of droplet stream microspeed dispersions. Phys. Fluids 312, 2936–2947 (1991)CrossRefGoogle Scholar
  62. 62.
    M. Orme, C. Huang, J. Courter, Precision droplet based manufacturing and material synthesis: fluid dynamics and thermal control issues. ILASS J. Atom. Sprays 6, 305–329 (1996)CrossRefGoogle Scholar
  63. 63.
    M. Orme, Q. Liu, R. Smith, Molten aluminum micro-droplet formation and deposition for advanced manufacturing applications. Alum. Trans. 3(1), 95–103 (2000)Google Scholar
  64. 64.
    A.A. Tseng, M.H. Lee, B. Zhao, Design and generation of a droplet deposition system for freeform fabrication of metal parts. Trans. ASME 132, 74–84 (2001)Google Scholar
  65. 65.
    S.X. Cheng, T. Li, S. Chandra, Producing molten metal droplets with a pneumatic droplet-on-demand generator. J. Mater. Process. Technol. 159(3), 295–302 (2005)CrossRefGoogle Scholar
  66. 66.
    X.-S. Jiang, L.-H. Qi, J. Luo, H. Huang, J.-M. Zhou, Research on accurate droplet generation for microdroplet deposition manufacture. Int. J. Adv. Manuf. Technol. 49(5), 535–541 (2010)CrossRefGoogle Scholar
  67. 67.
    Y-P. Chao, 3D printing and manufacture micro-channel structure by metal micro-droplet-on-demand deposition. Adv. Mater. Rev. 940, 311–315 (2014)Google Scholar
  68. 68.
    J.B. Lee, D. Derome, A. Dolatabadi, J. Carmeliet, Energy budget of liquid drop impact at maximum spreading: Numerical simulations and experiments. Langmuir 32(5), 1279–1288 (2016)CrossRefGoogle Scholar
  69. 69.
    B. Ballinger, R. S. Abbari, Excitation and dynamics of liquid tin micrometer droplet generation. Phys. Fluids 28, 074105 (1-20) (2016)Google Scholar
  70. 70.
    T. Wang, T.-H. Kusok, C. Zhou, In-situ droplet inspection and control system for liquid metal jet 3D printing process. Procedia Manuf. 10, 968–991 (2017)CrossRefGoogle Scholar
  71. 71.
    D.A. Ramirez, L.E. Murr, E. Martinez, D.H. Hernandez, J.L. Martinez, B.I. Machado, F. Medina, R.B. Wicker, P. Frigola, Novel precipitate microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting. Acta Mater. 59, 4088–4099 (2011)CrossRefGoogle Scholar
  72. 72.
    H.E. Collins, Superalloys (ASM International, Metals Park, 1968)Google Scholar
  73. 73.
    S.D. Antolovich, R.W. Stasrad, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klanstrom (eds.), Superalloys 1992 (The Minerals, Metals and Materials Society (TMS), Warrendale, 1992)Google Scholar
  74. 74.
    R.C. Reed, The superalloys: fundamentals and applications (Cambridge Univ. Press, Cambridge, 2008)Google Scholar
  75. 75.
    D. F. Poulonis, J. M. Oblak, D. S. Duvall, D.S. Precipitation in nickel base alloy 718. ASM Trans. Quart. 62, C11-C22 (1969)Google Scholar
  76. 76.
    B.H. Kear, J.M. Oblak, Deformation modes in γ′ precipitation hardened nickel-base alloys. J. de Physique 12(35), C1–C35 (1974)Google Scholar
  77. 77.
    M. Durand-Charre, The microstructure of superalloys (Gordon & Breach, Amsterdam, 1977)Google Scholar
  78. 78.
    G.R. Leverant, B.H. Kear, J.M. Oblak, Creep of precipitation-hardened, nickel-base alloy single crystals at high temperature. Metall. Mater. Trans. B B4(1), 355–362 (1973)CrossRefGoogle Scholar
  79. 79.
    S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, Comparison of microstructures and mechanical properties of solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting. Metall. Mater. Trans. A 41A, 3216–3227 (2010)CrossRefGoogle Scholar
  80. 80.
    L.E. Murr, S.M. Gaytan, in Electron beam melting. ed. by S. Masoad. Comprehensive materials processing, vol. 10 (Elsevier Ltd., London, 2010), pp. 135–161Google Scholar
  81. 81.
    A. Niang, J. Huez, J. Lacase, B. Viguier, Cauterizing precipitation defects in nickel base 718 alloy. Mater. Sci. Forum 636–637, 517–522 (2010)CrossRefGoogle Scholar
  82. 82.
    K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, Microstructures and mechanical behavior for Inconel 718 fabricated by selective laser melting. Acta Mater. 60, 2229–2239 (2012)CrossRefGoogle Scholar
  83. 83.
    A. Strondl, R. Fischer, G. Frommeyer, A. Schneider, Investigations of MX and γ/γ′ precipitates in the nickel-based Superalloy 718 produced by electron beam melting. Mater. Sci. Eng. A 480A, 138–147 (2008)CrossRefGoogle Scholar
  84. 84.
    T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada, Creep behavior of Ni-base single-crystal superalloys with various gamma prime volume fraction. Acta Mater. 52(12), 3737–3744 (2004)CrossRefGoogle Scholar
  85. 85.
    T.M. Pollock, S.J. Tin, Nickel-based Superalloys for advanced turbine engines: chemistry, microstructure and properties. J. Propulsion Power 22(2), 361–374 (2006)CrossRefGoogle Scholar
  86. 86.
    P. Caron, O.J. Lavigne, Recent studies at Oneva on Superalloys for single crystal turbine blades. J. Aeorspace Lab 3, 1–14 (2001)Google Scholar
  87. 87.
    L.E. Murr, E. Martinez, X.M. Pan, S.M. Gaytan, J.A. Castro, C.A. Terrazas, F. Medina, R.B. Wicker, D.H. Abbott, Microstructures of Rene 142 nickel-based Superalloy fabricated by electron beam melting. Acta Mater. 61(11), 4289–4296 (2013)CrossRefGoogle Scholar
  88. 88.
    R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx, Electron microscopy transmission images of coherent domain boundaries I. Dyn. Theory. Phys. Stat. Sol. B 4, 383–410 (1964)CrossRefGoogle Scholar
  89. 89.
    R. Gevers, P. Delavignette, H. Blank, J. Van Landuyt, S. Amelinckx. Electron microscope transmission images of coherent domain boundaries II. Observations. Phys. Stat. Solid 5(3), 595–633 (1964)CrossRefGoogle Scholar
  90. 90.
    L.E. Murr, E. Martinez, X.M. Pan, C.M. Wang, J. Yang, S.J. Li, F. Yang, Q. Xu, J. Hernandez, W. Zhu, S.M. Gaytan, F. Medina, R.B. Wicker, Properties of solid and reticulated mesh components of pure iron fabricated by electron beam melting. J. Mater. Res. Technol. 2(4), 76–88 (2013)CrossRefGoogle Scholar
  91. 91.
    E. Martinez, L.E. Murr, J. Hernandez, X.M. Pan, K.N. Amato, P. Frigola, C. Terrazas, S.M. Gaytan, E. Rodriguez, F. Medina, R.B. Wicker, Microstructures of niobium components fabricated by electron beam melting. Metallog. Microstruct. Anal. 3(2), 183–189 (2013)CrossRefGoogle Scholar
  92. 92.
    S. Natividad, A. Acosta, K.N. Amato, J. Ventura, B. Portillo, S.K. Varma, Heat treatment and oxidation characteristics of Nb-20Mo-15Si-5B-20 (Cr, Ti) alloys from 700 to 1400 C. Mater. Sci. Forum 638–642(638–642), 2351–2356 (2010)CrossRefGoogle Scholar
  93. 93.
    B. Portillo, S.K. Varma, Oxidation behavior of Nb-20Mo-15Si-25Cr and Nb-20Mo-15Si-25Cr-5B alloys. Metall. Mater. Trans. A 43A, 147–154 (2012)CrossRefGoogle Scholar
  94. 94.
    H. Conrad, S. Feuerstein, L. Rice, Effects of grain size on the dislocation density and flow stress of niobium. Mater. Sci. Eng. 2, 157–168 (1967)CrossRefGoogle Scholar
  95. 95.
    E. Louvis, P. Fox, C.J. Sutcliffe, Selective laser melting of aluminum components. J. Mater. Process. Technol. 211, 275–284 (2011)CrossRefGoogle Scholar
  96. 96.
    T. Mahale, D. Cormier, O. Harrysson, K. Ervin, Advances in electron beam melting of aluminum alloys. Proc. Solid Freeform Fabrication (SFF) Symp. pp. 312–324 (2007) Univ Texas, Austin, TXGoogle Scholar
  97. 97.
    F. Tresisan, F. Calignano M. Lorusso, J. Pakkanen, A. Arersa, E. P. Ambrosia, M. Lombardi, P. Fino, D. Manpreb, On the selective laser melting (SLM) of the Al-Si-Mg alloy: process, microstructure and mechanical properties. Materials 10(1), 76–90 (2017)CrossRefGoogle Scholar
  98. 98.
    L. Brice, R. Shenry, M. Kral, K. Buchannan, Precipitation behavior of aluminum alloy 2139 fabricated by additive manufacturing. Mater. Sci. Eng. A 648A, 9–14 (2015)CrossRefGoogle Scholar
  99. 99.
    N.T. Abrulkhair, N.M. Everitt, I. Maskery, I. Ashcroft, Selective laser melting of aluminum alloys. MRS Bull. 42(4), 311–319 (2017)CrossRefGoogle Scholar
  100. 100.
    A. Kelly, R.B. Nicholson, in Precipitation Hardening, ed by B. Chalmers, Progress in Materials Science, vol. 10, No. 3, (Pergamon Press, New York, 1963)Google Scholar
  101. 101.
    L.E. Murr, G. Liu, J.C. McClure, A TEM study of precipitation and related microstructures in friction-stir welded 6061 aluminum. J. Mater. Sci. 33, 1243–1251 (1998)CrossRefGoogle Scholar
  102. 102.
    M. H. Jacobs, The nucleation and growth of precipitates in aluminum alloys. Ph.D. Thesis (Physics Dept., Univ. of Warwick, 1969)Google Scholar
  103. 103.
    S.C. Wang, M.J. Starink, Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg(Li) based alloys. Int. Mater. Rev. 51, 193–215 (2015)Google Scholar
  104. 104.
    L.B. Ber, N. Kolobnev, E.-N. Kablov, Heat Treatment of Aluminum Alloy (CRC Press/Taylor & Francis, Boca Raton, 2015)Google Scholar
  105. 105.
    K.A. Bakke, The surface evolver. Exp. Mech. 1, 141–165 (1992)Google Scholar
  106. 106.
    L.E. Murr, K.N. Amato, S.J. Li, Y.-X. Tian, X.-Y. Cheng, S.M. Gaytan, E. Martinez, P.W. Shindo, F. Medina, R.B. Wicker, Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. J. Mech. Behav. Biomed. Mater. 4(7), 396–1411 (2011)CrossRefGoogle Scholar
  107. 107.
    L.E. Murr, Open cellular metal implant design and fabrication for biomechanical compatibility with bone using electron beam melting. J. Mech. Behav. Biomed. Mater. 76, 164–177 (2017)CrossRefGoogle Scholar
  108. 108.
    P. Heinl, L. Muller, C. Korner, R.F. Singer, F.A. Muller, Cellular Ti–6Al–4V structures with interconnected macros porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4, 1536–1544 (2008)CrossRefGoogle Scholar
  109. 109.
    V. Karageorgio, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474–5491 (2005)CrossRefGoogle Scholar
  110. 110.
    K.C. Nune, R.D.K. Misra, S.M. Gaytan, L.E. Murr, Biological response of next generation of 3D Ti–6Al–4V biomedical devices using additive manufacturing of cellular and functional mesh structures. J. Biomater. Tissue Eng. 4(10), 755–771 (2014)CrossRefGoogle Scholar
  111. 111.
    A. Kumar, K.C. Nune, L.E. Murr, R.D.K. Misra, Biocompatibility and mechanical behavior of three-dimensional scaffolds for biomedical devices: process-structure-property paradigm. Int. Mater. Rev. 61(1), 20–45 (2016)CrossRefGoogle Scholar
  112. 112.
    L.J. Gibson, M.F. Ashby, The mechanics of three-dimensional cellular materials. Proc. Roy. Soc. Lond. Math. Phys. Sci. 383, 43–49 (1982)CrossRefGoogle Scholar
  113. 113.
    M. Niinomi, Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A A243, 231–236 (1998)CrossRefGoogle Scholar
  114. 114.
    Y.C. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, R. Yang, Elastic deformation behavior of Ti-24Nb-4Zr-7-9Sn for biomedical applications. Acta Biomater. 3, 277–286 (2007)CrossRefGoogle Scholar
  115. 115.
    J. Hernandez, S.J. Li, E. Martinez, L.E. Murr, X.M. Pan, K.N. Amato, X.Y. Cheng, F. Yang, C.A. Terrazas, Y.C. Hao, R. Yang, F. Medina, R.B. Wicker, Microstructures and hardness properties for & β-phase Ti-24Nb-4Zr-7.9Sn alloy fabricated by electron beam melting. J. Mater. Sci. Technol. 29(11), 1011–1017 (2013)CrossRefGoogle Scholar
  116. 116.
    L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge Univ. Press, Cambridge, 1997)CrossRefGoogle Scholar
  117. 117.
    S.J. Li, L.E. Murr, X.Y. Cheng, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 60, 793–802 (2012)CrossRefGoogle Scholar
  118. 118.
    S.J. Li, Q.S. Xu, Z. Wang, W.T. Hou, Y.L. Hao, R. Yang, L.E. Murr, Influence of cell shape on mechanical properties of Ti–6Al–4V meshes fabricated by electron beam melting. Acta Biomater. 10, 4537–4547 (2014)CrossRefGoogle Scholar
  119. 119.
    P.F. Gomez, J.A. Morcuende, Early attempts at hip arthroplasty: 1700s to 1950s. Iowa Orthoped. J. 25, 25–29 (2005)Google Scholar
  120. 120.
    S.R. Knight, R. Aujla, S.P. Biswas, Total hip arthroplasty-over 100 years of operative history. Orthoped. Rev. 3(2), 1–16 (2011)CrossRefGoogle Scholar
  121. 121.
    M.H. Kremer, D.R. Larson, C.S. Crawson, W.K. Krema, R.E. Washington, C.A. Skiner, C Prevalence of total hip and knee replacement in the United States. J. Bone Jt. Surg. Amer. 97(17), 1386–1397 (2015)CrossRefGoogle Scholar
  122. 122.
    H. Cai, Application of 3D pointing in orthopedics: Status quo and opportunities in China. Ann. Transl. Med. 3(Suppl 1), S12–S15 (2015)Google Scholar
  123. 123.
    S. J. Li, X. K. Hou, K. C. Nune, R. D. K. Misra, V. L. Correa-Rodriguez, Z. Guo, Y. L. Hao, R. Yang, L. E., Fabrication of open-cellular (porous) titanium alloy implants: osseointegration, vascularization and preliminary human trials. Sci. China Mater. Published online 4 August (2017)Google Scholar
  124. 124.
    L.E. Murr, Additive Manufacturing of Biomedical Devices: An Overview (Mater, Technol, 2018)Google Scholar
  125. 125.
    D.C. Ackland, D. Robinson, M. Redhead, P. VeeSinLi, A. Moskaljuk, G. Dimitroulis, A personalized 3D printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J. Mech. Behav. Biomed. Mater. 69, 404–411 (2017)CrossRefGoogle Scholar
  126. 126.
    V. Weissmann, P. Drescher, R. Bader, H. Seitz, H. Hansmann, N. Laufer, Comparison of single Ti–6Al–4V struts made using selective laser melting and electron beam melting subject to part orientation. Metals 7, 91–98 (2017)CrossRefGoogle Scholar
  127. 127.
    D.A. Ramirez, L.E. Murr, S.J. Li, E. Tian, E. Martinez, B.I. Machado, S.M. Gaytan, F. Medina, R.B. Wicker, Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater. Sci. Eng. A 528A, 5379–5386 (2011)CrossRefGoogle Scholar
  128. 128.
    L.E. Murr, S.J. Li, Y. Jian, K.N. Amato, E. Martinez, F. Medina, Open-cellular Co-base and Ni-base Superalloys fabricated by electron beam melting. Materials 4, 782–790 (2011)CrossRefGoogle Scholar
  129. 129.
    X. Zhao, S.J. Li, M. Zhang, Y. Liu, T.B. Sercombe, S. Wang, Y.L. Hao, R. Yang, L.E. Murr, Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting. Mater. Des. 95, 21–31 (2016)CrossRefGoogle Scholar
  130. 130.
    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, R.B. Wicker, Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. J. Mech. Behav. Biomed. Mater. 2, 20–32 (2010)CrossRefGoogle Scholar
  131. 131.
    K.N. Amato, J. Hernandez, L.E. Murr, E. Martinez, S.M. Gaytan, P.W. Shindo, Comparison of microstructures and properties for a Ni-base Superalloy (Alloy 625) fabricated by electron and laser beam melting. J. Mater. Res. 1(2), 3–15 (2012)Google Scholar
  132. 132.
    T. Trosch, J. Strossner, R. Volkl, U. Glatzel, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting. Mater. Lett. 164, 428–431 (2016)CrossRefGoogle Scholar
  133. 133.
    S.L. Sing, J. An, W.Y. Yeong, F.E. Wirier, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J. Othoped. Res. 34(3), 369–385 (2016)CrossRefGoogle Scholar
  134. 134.
    D. Hardwick, W.M. Williams, The birth of metallography—The work of Henry Clifton Sorby (1826–1908). Bull. Canad. Inst. Min. Metall. 73(813), 143–144 (1980)Google Scholar
  135. 135.
    C.S. Smith, A history of metallography: the development of ideas on the structure of metals before 1890 (University of Chicago Press, Chicago, 1960)Google Scholar
  136. 136.
    C.S. Smith, Metallography—How it started and where it’s going. Metallography 8, 91–103 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical, Materials and Biomedical Engineering; W. M. Keck Center for 3D InnovationThe University of Texas at El PasoEl PasoUSA

Personalised recommendations