Metallography, Microstructure, and Analysis

, Volume 7, Issue 2, pp 222–238 | Cite as

Effects of Thermo-mechanical Process Parameters on Microstructure and Crystallographic Texture of High Ni–Mo Ultrahigh Strength Steel

  • G. Mandal
  • S. K. Ghosh
  • D. Chakrabarti
  • S. Chatterjee
Technical Article


A novel low-carbon micro-alloyed steel has been developed with ultrahigh strength (UTS ~ 1700 MPa), satisfactory ductility (total elongation ~ 13%) and impact toughness (25 J/cm2 at − 40 °C) for light-weight applications in automobile, aerospace and defence sectors. The effect of finish rolling temperatures (850–750 °C) and cooling rate (air cooling versus water quenching) on the evolution of microstructure and crystallographic texture and finally on the mechanical properties of thermo-mechanically controlled processed steel has been studied. A refinement in mixed microstructure comprised of granular/lower bainite and lath/plate martensite and an intensification of Goss and rotated Goss texture components were found with the decrease in finish rolling temperature and increase in cooling rate. Interaction of fine-scale carbide/carbonitride precipitates of Nb and Ti with the dislocation substructure present within bainite and martensite contributed significant precipitation strengthening to the steel.


Steel Thermo-mechanical controlled processing Texture Precipitation Impact toughness 


  1. 1.
    K. Zhang, M. Zhang, Z. Guo, N. Chen, Y. Rong, A new effect of retained austenite on ductility enhancement in high-strength quenching–partitioning–tempering martensitic steel. Mater. Sci. Eng. A 528, 8486–8491 (2011)CrossRefGoogle Scholar
  2. 2.
    H.K.D.H. Bhadeshia, R. Honeycombe, Steels: Microstructure and Properties, 3rd edn. (Elsevier, Amsterdam, 2006)Google Scholar
  3. 3.
    T. Gladman, The Physical Metallurgy of Microalloyed Steels (Institute of Materials, London, 1997)Google Scholar
  4. 4.
    M. De Meyer, D. Vanderschueren, B.C. De Cooman, The influence of the substitution of Si by Al on the properties of cold rolled C–Mn–Si TRIP steels. ISIJ Int. 39(8), 813–822 (1999)CrossRefGoogle Scholar
  5. 5.
    K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall. Trans. A 23(11), 3085–3091 (1992)CrossRefGoogle Scholar
  6. 6.
    T.V. Philip, T.J. McCaffy, Ultrahigh Strength Steel, Metals Handbook, 10th edn. (ASM International, New York, 1990), pp. 431–448Google Scholar
  7. 7.
    R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry. Arch. Civ. Mech. Eng. 8(2), 103–117 (2008)CrossRefGoogle Scholar
  8. 8.
    D. K. Matlock, J. G. Speer, Third generation of AHSS: microstructure design concepts, in Microstructure and Texture in Steels (Springer, London, 2009), pp. 185–205Google Scholar
  9. 9.
    M. Zhao, K. Yang, Y. Shan, The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel. Mater. Sci. Eng. A 335, 14–20 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Mandal, N.K. Tewary, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Thermo-mechanically controlled processed ultrahigh strength steel: microstructure, texture and mechanical properties. Mater. Sci. Eng. A 663, 126–140 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Mandal, C. Roy, S.K. Ghosh, S. Chatterjee, Structure-property relationship in a 2 GPa grade micro-alloyed ultrahigh strength steel. J. Alloys Compd. 705, 817–827 (2017)CrossRefGoogle Scholar
  12. 12.
    M.C. Zhao, Y.Y. Shan, J.B. Qu, F.R. Xiao, Y. Zhong, K. Yang, Acicular ferrite formation in a pipeline steel with thermo-mechanical control process. Acta Metall. Sin. 37(8), 820–824 (2001)Google Scholar
  13. 13.
    G.J. Baczynski, J.J. Jonas, L.E. Collins, The influence of rolling practice on notch toughness and texture development in high-strength line pipe. Metall. Mater. Trans. A 30, 3045–3054 (1999)CrossRefGoogle Scholar
  14. 14.
    B. Faucher, B. Dogan, Evaluation of the fracture toughness of hot-rolled low-alloy Ti–V plate steel. Metall. Trans. A 19, 505–516 (1988)CrossRefGoogle Scholar
  15. 15.
    J.R. Davis, Alloying: Understanding the Basics, ASM International, Materials Park, Ohio-44073-0002, 193-209(2001)Google Scholar
  16. 16.
    M. Calcagnotto, D. Ponge, D. Raabe, On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels. Metall. Mater. Trans. A 43, 37–46 (2012)CrossRefGoogle Scholar
  17. 17.
    J.A. Omotoyinbo, O.O. Oluwole, Effect of thermomechanical working on the strengthening of some austenitic steel grades. Mater. Des. 30, 335–339 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Zhang, P. Wang, D. Li, Y. Li, Investigation of the evolution of retained austenite in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering. Mater. Des. 84, 385–394 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Kong, C. Xie, Effect of molybdenum on continuous cooling bainite transformation of low-carbon microalloyed steel. Mater. Des. 27, 1169–1173 (2006)CrossRefGoogle Scholar
  20. 20.
    R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel. Mater. Sci. Eng. A 394, 339–352 (2005)CrossRefGoogle Scholar
  21. 21.
    X. Wang, H. Zhao, C. Shang, X. He, The microstructure and properties of high performance steels with low yield-to-tensile ratio. J. Alloys Compd. 577S, S678–S683 (2013)CrossRefGoogle Scholar
  22. 22.
    K. Nishioka, K. Ichikawa, Progress in thermomechanical control of steel plates and their commercialization. Sci. Technol. Adv. Mater. 13, 1–20 (2012)Google Scholar
  23. 23.
    P.S. Bandyopadhyay, S.K. Ghosh, S. Kundu, S. Chatterjee, Evolution of microstructure and mechanical properties of thermomechanically processed ultrahigh-strength steel. Metall. Mater. Trans. A 42, 2742–2752 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Fletcher, Meta-analysis of T NR measurements: determining new empirical models based on composition and strain, in: Austenite Processing Symposium (Internal Company Presentation, 2008), pp. 1–14Google Scholar
  25. 25.
    C. Ma, L. Hou, J. Zhang, L. Zhuang, Influence of thickness reduction per pass on strain, microstructures and mechanical properties of 7050 Al alloy sheet processed by asymmetric rolling. Mater. Sci. Eng. A 650, 454–468 (2016)CrossRefGoogle Scholar
  26. 26.
    I. Tamura, H. Sekine, T. Tanaka and C. Ouchi: Thermomechanical Processing of High-strength Low-alloy Steels, Butterworth & Co. Ltd., 39–91(1988)Google Scholar
  27. 27.
    ASTM Standard E8 M-96, Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, 03.01, 76–96(1996)Google Scholar
  28. 28.
    N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scr. Mater. 46(4), 305–310 (2002)CrossRefGoogle Scholar
  29. 29.
    Chen Jun, Tang Shuai, Liu Zhen-Yu, Wang Guo-Dong, Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel. Mater. Sci. Eng. A 559, 241–249 (2013)CrossRefGoogle Scholar
  30. 30.
    Q. Sylvain, M. Ghiath, D. Benoit, Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 58, 5586–5595 (2010)CrossRefGoogle Scholar
  31. 31.
    B. Verlinden, J. Driver, I. Samajdar, R.D. Doherty, Thermo-Mechanical Processing of Metallic Materials, 1st edn. (Elsevier Pub., Amsterdam, 2007), pp. 417–424Google Scholar
  32. 32.
    H. Wu, B. Ju, D. Tang, R. Hua, A. Guo, Q. Kang, D. Wang, Effect of Nb addition on the microstructure and mechanical properties of an 1800 MPa ultrahigh strength steel. Mater. Sci. Eng. A 622, 61–66 (2015)CrossRefGoogle Scholar
  33. 33.
    I.A. Yakubtsov, P. Poruks, J.D. Boyd, Microstructure and mechanical properties of bainitic low carbon high strength plate steels. Mater. Sci. Eng. A 480, 109–116 (2008)CrossRefGoogle Scholar
  34. 34.
    R.K. Ray, J.J. Jonas, Transformation textures in steels. Int. Mater. Rev. 35(1), 1–36 (1990)CrossRefGoogle Scholar
  35. 35.
    K. Zhu, O. Bouaziz, C. Oberbillig, M. Huang, An approach to define the effective lath size controlling yield strength of bainite. Mater. Sci. Eng. A 527, 6614–6619 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Chen, Y.G. An, C. Lahaije, Toughness improvement in hot rolled HSLA steel plates through asymmetric rolling. Mater. Sci. Eng. A 625, 374–379 (2015)CrossRefGoogle Scholar
  37. 37.
    Y. You, C. Shang, N. Wenjin, S. Subramanian, Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content. Mater. Sci. Eng. A 558, 692–701 (2012)CrossRefGoogle Scholar
  38. 38.
    A.J. Kaijalainen, P. Suikkanen, L. Pentti Karjalainen, J.J. Jonas, Effect of austenite pancaking on the microstructure, texture, and bendability of an ultrahigh-strength strip steel. Metal. Mater. Trans. A 45, 1273–1283 (2014)CrossRefGoogle Scholar
  39. 39.
    B.C. De Cooman, Structure-properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 8, 285–303 (2004)CrossRefGoogle Scholar
  40. 40.
    J. Jin, Y. Lee, Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel. Mater. Sci. Eng. A 527, 157–161 (2009)CrossRefGoogle Scholar
  41. 41.
    H. Rastegari, A. Kermanpur, A. Najafizadeh, Effect of initial microstructure on the work hardening behavior of plain eutectoid steel. Mater. Sci. Eng. A 632, 103–109 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Zhu, Y.L. Kang, K.K. Ren, S.C. Li, Effect of partitioning temperature on work hardening behavior of Q&P steels. Adv. Mater. Res. 299–300, 403–407 (2011)CrossRefGoogle Scholar
  43. 43.
    A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock Jr., Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel. Metall. Mater. Trans. A 37(6), 1875–1886 (2006)CrossRefGoogle Scholar
  44. 44.
    T.S. Byun, I.S. Kim, Tensile properties and inhomogeneous deformation of ferrite-martensite dual-phase steels. J. Mater. Sci. 28(11), 2923–2932 (1993)CrossRefGoogle Scholar
  45. 45.
    F. Ozturk, A. Polat, S. Toros, R.C. Picu, Strain hardening and strain rate sensitivity behaviors of advanced high strength steels. J. Iron. Steel Res. Int. 20(6), 68–74 (2013)CrossRefGoogle Scholar
  46. 46.
    P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, Y.Y. Li, Effect of delta ferrite on impact properties of low carbon 13Cr–4Ni martensitic stainless steel. Mater. Sci. Eng. A 527, 3210–3216 (2010)CrossRefGoogle Scholar
  47. 47.
    Y.-L. Kang, Q.-H. Han, X.-M. Zhao, M.-H. Cai, Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium. Mater. Des. 44, 331–339 (2013)CrossRefGoogle Scholar
  48. 48.
    X.P. Mao, X.D. Huo, X.J. Sun, Y.Z. Chai, Strengthening mechanisms of a new 700 MPa hot rolled Ti-microalloyed steel produced by compact strip production. J. Mater. Process. Technol. 210, 1660–1666 (2010)CrossRefGoogle Scholar
  49. 49.
    Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Strengthening mechanisms of ultrafine grained dual phase steels developed by new thermomechanical processing. ISIJ Int. 55, 218–226 (2015)CrossRefGoogle Scholar
  50. 50.
    J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Phil. Mag. 5, 485–497 (1960)CrossRefGoogle Scholar
  51. 51.
    M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010)CrossRefGoogle Scholar
  52. 52.
    S.S. Campos, E.V. Morales, H.J. Kestenbach, On strengthening mechanisms in commercial Nb–Ti hot strip steels. Metall. Mater. Trans. A 32A, 1245–1248 (2001)CrossRefGoogle Scholar
  53. 53.
    I. Kozasu, C. Ouchi, T. Sampei, T. Okita, Microalloying ‘75 (Union Carbide Corp., New York, 1976), pp. 120–135Google Scholar
  54. 54.
    Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides. ISIJ Int. 44, 1945–1951 (2004)CrossRefGoogle Scholar
  55. 55.
    J. Hu, L. Du, J. Wang, Effect of cooling procedure on microstructures and mechanical properties of hot rolled Nb–Ti bainitic high strength steel. Mater. Sci. Eng. A 554, 79–85 (2012)CrossRefGoogle Scholar
  56. 56.
    H. Xie, L. Du, J. Hu, R.D.K. Misra, Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness. Mater. Sci. Eng. A 612, 123–130 (2014)CrossRefGoogle Scholar
  57. 57.
    X. Li, C. Lei, X. Deng, Z. Wang, Y. Yu, G. Wang, R.D.K. Misra, Precipitation strengthening in titanium microalloyed high-strength steel plates with new generation-thermomechanical controlled processing (NG-TMCP). J. Alloys Compd. 689, 542–553 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2018

Authors and Affiliations

  • G. Mandal
    • 1
  • S. K. Ghosh
    • 1
  • D. Chakrabarti
    • 2
  • S. Chatterjee
    • 1
  1. 1.Department of Metallurgy and Materials EngineeringIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, KharagpurKharagpurIndia

Personalised recommendations