Metallography, Microstructure, and Analysis

, Volume 7, Issue 2, pp 239–244 | Cite as

Undiluted Recycling of Aluminum Scrap Alloy Using Hume-Rothery’s Rule

  • A. K. Prasada Rao
  • W. Q. Ain
  • M. K. Faisal
  • B. I. Mazni
Technical Note


A new concept of an undiluted recycling of aluminum alloy containing high-Fe impurity has been proposed and discussed herein. The primary objective of this concept is to avoid the conventional addition of virgin aluminum, to the aluminum scrap for lowering the concentration of Fe impurity. Results have shown that the Al5FeSi (β-phase) can be suppressed with minor alloying additions of some elements as per Hume-Rothery’s criteria for solid solubility. The proposed concept has been validated by Stirling’s approximation method.


Recycling Aluminum alloy Microstructure Solidification Metallurgy Intermetallic alloys and compounds 



The corresponding author is also highly thankful to KBM Affilips BV (the Netherlands), for their sponsorship of inoculant master alloy, and Malaysian Aluminium Alloys Company (Malaysia), for sponsoring the recycled automotive recycled alloy used in the present work. Ministry of Higher Education (MOHE), Malaysia, and Universiti Malaysia Pahang are also highly acknowledged for funding the present work through the FRGS and UMP Research Grants (RDU140113 and RDU140363).


  1. 1.
    G. Gaustad, E. Olivetti, R. Kirchain, Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour. Conserv. Recycl. 58, 79–87 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Das, Designing aluminum alloys for a recycle-friendly world. Mater. Sci. Forum 519–521, 1239–1244 (2006)CrossRefGoogle Scholar
  3. 3.
    J.A.S. Green, Aluminum Recycling and Processing for Energy Conservation and Sustainability (ASM International, Materials Park, 2007)Google Scholar
  4. 4.
    G. Rombach, Raw material supply by aluminium recycling—efficiency evaluation and long-term availability. Acta Mater. 61, 1012–1020 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Li, M. Samuel, F.H. Samuel, C. Ravindran, S. Valtierra, H.W. Doty, Parameters controlling the performance of AA319-type alloys: part I. Tensile properties. Mater. Sci. Eng. A 367(1–2), 96–110 (2004)CrossRefGoogle Scholar
  6. 6.
    V. Abouei, H. Saghafian, S.G. Shabestari, M. Zarghami, Effect of Fe-rich intermetallics on the wear behavior of eutectic Al–Si piston alloy (LM13). Mater. Des. 31(7), 3518–3524 (2010)CrossRefGoogle Scholar
  7. 7.
    W. Khalifa, F.H. Samuel, J.E. Gruzleski, Iron intermetallic phases in the Al corner of the Al–Si–Fe system. Metall. Mater. Trans. A 34(13), 807–825 (2003)CrossRefGoogle Scholar
  8. 8.
    E.R. Wang, X.D. Hui, S.S. Wang, Y.F. Zhao, G.L. Chen, Improved mechanical properties in cast Al–Si alloys by combined alloying of Fe and Cu. Mater. Sci. Eng. A 527(29–30), 7878–7884 (2010)CrossRefGoogle Scholar
  9. 9.
    N.A. Belov, A.A. Aksenov, D.G. Eskin, Iron in Aluminium Alloys: Impurity and Alloying Element (CRC Press, Boca Raton, 2002). ISBN 9780415273527Google Scholar
  10. 10.
    J.J. Moore, Recycling of non-ferrous metals. Int. Met. Rev. 234(52), 241–264 (1978)Google Scholar
  11. 11.
    J.Q. Wang, C.F. Qian, B.J. Zhang, M.K. Tseng, S.W. Xiong, Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al–Fe–V–Si alloy. Scr. Mater. 34(10), 1509–1515 (1996)CrossRefGoogle Scholar
  12. 12.
    D.J. Skinner, R.L. Bye, D. Raybould, A.M. Brown, Dispersion strengthened Al–Fe–V–Si alloy. Scr. Metall. 20, 867–872 (1986)CrossRefGoogle Scholar
  13. 13.
    A.H. Maitland, D. Rodriguez, Vanadium in aluminium, in Proceedings of the 8th International Light Metals Congress, pp. 423–425 (1987)Google Scholar
  14. 14.
    T.H. Ludwig, P.L. Schaffer, L. Arnberg, Influence of vanadium on the microstructure of A356 foundry alloy, in Light Metals TMS, ed. by B. Sadler (The Minerals, Metals & Materials Society, Pittsburgh, 2013), pp. 1023–1028Google Scholar
  15. 15.
    A.K. Prasada Rao, Influence of vanadium on the microstructure of A319 alloy. Trans. Indian Inst. Met. 64(4–5), 447–451 (2011)CrossRefGoogle Scholar
  16. 16.
    W.Q. Ain, M.K. Faisal, M.K. Talari, W. Darham, M.M. Ratnam, Y. Kwon, N.J. Kim, A.K. Prasada Rao, Effect of Mo on the high-temperature creep resistance and machinability of a recycled Al-alloy with high iron impurity. J. Mater. Eng. Perform. 25(10), 4310–4316 (2016)CrossRefGoogle Scholar
  17. 17.
    O. Kubaschewski, C.B. Alcock, Metallurgical Thermochemistry, Vol. 4, International Series on Materials Science and Technology, 5th edn. (Pergamon Press, Oxford, 1989). ISBN 0-02-946212-6Google Scholar
  18. 18.
    B.S. Murty, J.W. Yeh, S. Ranganathan, High Entropy Alloys (Elsevier, Amsterdam, 2014). ISBN 978-0-12-800251-3Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature and ASM International 2018

Authors and Affiliations

  • A. K. Prasada Rao
    • 1
    • 2
  • W. Q. Ain
    • 1
  • M. K. Faisal
    • 1
  • B. I. Mazni
    • 1
  1. 1.Faculty of Manufacturing EngineeringUniversiti Malaysia PahangPekanMalaysia
  2. 2.School of Engineering and TechnologyBML Munjal UniversityGurgaonIndia

Personalised recommendations