Metallography, Microstructure, and Analysis

, Volume 6, Issue 6, pp 591–597 | Cite as

Pearlite Development in Commercial Hadfield Steel by Means of Isothermal Reactions

  • M. Martín
  • M. Raposo
  • O. Prat
  • M. F. Giordana
  • J. Malarría
Technical Article


The Fe–12Mn–1C Hadfield steel is an abrasion-resistant alloy of high technological relevance for mining and heavy machinery. This composition is susceptible to pearlite formation which is detrimental for the material’s ductility. Although its spread use, the study of pearlite formation has been preserved to laboratory conditions which cannot be transferred to industrial practices. This manuscript provides updated information about this phenomenon by constructing the time–temperature-transformation diagram of the alloy between 400 and 600 °C. The pearlitic reaction occurs above 450 °C and begins on the grain boundaries. Only 7 min is needed for the transformation to start at 550 °C, and a maximum pearlite fraction of 35% is reached after 150 min at this temperature. Results are compared with the Fe–12Mn–0.8C composition mostly found in literature. The discussion comprises the effects of carbon and manganese content on the pearlitic reaction with the support of thermodynamics calculations.


Hadfield steel Isothermal reaction Pearlite TTT-diagram Thermodynamics 



The authors acknowledge the support of CONICET, Argentina, under Grants PIP 0488 and PDTS-251.


  1. 1.
    M. Martín, M. Raposo, A. Druker, C. Sobrero, J. Malarría, Influence of Pearlite Formation on the Ductility Response of Commercial Hadfield Steel. Metallogr. Microstruct. Anal. 5, 505 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Ono, T. Tsuchiyama, and S. Takaki, Mechanism of Embrittlement in Hadfield Steel, in Steels and Materials for Power Plants (Wiley, New York, 2006) FRG, pp. 143–148Google Scholar
  3. 3.
    S.A. Hackney, G.J. Shiflet, The Pearlite-Austenite Growth Interface in an Fe–0.8 C–12 Mn alloy. Acta Met. 35, 1007 (1987)CrossRefGoogle Scholar
  4. 4.
    S.A. Hackney, G.J. Shiflet, Pearlite Growth Mechanism. Acta Met. 35, 1019 (1987)CrossRefGoogle Scholar
  5. 5.
    S.A. Hackney, Morphological Instabilities and Branching Processes at the Initiation of the Eutectoid Transformation. Scr. Metall. Mater. 25, 1453 (1991)CrossRefGoogle Scholar
  6. 6.
    S.A. Hackney, G.J. Shiflet, Interfacial Structure at the pearlite: Austenite Growth Interface in an Fe–0.8C–12Mn Steel. Scr. Metall. 19, 757 (1985)CrossRefGoogle Scholar
  7. 7.
    R.J. Dippenaar, R.W.K. Honeycombe, The Crystallography and Nucleation of Pearlite. Proc. R. Soc. A Math. Phys. Eng. Sci. 333, 455 (1973)CrossRefGoogle Scholar
  8. 8.
    D.S. Zhou, G.J. Shiflet, Ferrite: Cementite Crystallography in Pearlite. Met. Trans. A 23, 1259 (1992)CrossRefGoogle Scholar
  9. 9.
    C.R. Hutchinson, G.J. Shiflet, The Formation of Partitioned Pearlite at Temperatures Above the Upper Ae1 in an Fe–C–Mn Steel. Scr. Mater. 50, 1 (2004)CrossRefGoogle Scholar
  10. 10.
    A.Y.M. Ontman, G.J. Shiflet, Thermodynamic Mapping of Austenite Decomposition’s Approach Toward Equilibrium in Fe–C–Mn at 700 °C. Acta Mater. 89, 98 (2015)CrossRefGoogle Scholar
  11. 11.
    M.X. Zhang, P.M. Kelly, The Morphology and Formation Mechanism of Pearlite in Steels. Mater. Charact. 60, 545 (2009)CrossRefGoogle Scholar
  12. 12.
    R.F. Mehl, W.C. Hagel, The Austenite: Pearlite Reaction. Prog. Met. Phys. 6, 74 (1956)CrossRefGoogle Scholar
  13. 13.
    N. Zhong, X. Wang, Z. Guo, Y. Rong, Orientation Relationships between Ferrite and Cementite by Edge-to-edge Matching Principle. J. Mater. Sci. Technol. 27, 475 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Ono, T. Tsuchiyama, S. Takaki, Microstructural Change during Isothermal Aging in High Manganese Austenitic Steels. Tetsu-to-Hagane 84, 309 (1998)CrossRefGoogle Scholar
  15. 15.
    D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Chapman and Hall, London, 1992), p. 333CrossRefGoogle Scholar
  16. 16.
    C. Scott, S. Allain, M. Faral, N. Guelton, The Development of a New Fe–Mn–C Austenitic Steel for Automotive Applications. Rev. Métallurgie 103, 293 (2006)CrossRefGoogle Scholar
  17. 17.
    N. Ridley, The Pearlite Reaction, in Proceedings of International Conference on Phase Transformations in Ferrous alloys, eds. by A.R. Marder, J.I. Goldstein (TMS-AIME, Warrendale, 1984), p. 201–236Google Scholar
  18. 18.
    M. Hillert, Analysis of the Effect of Alloying Elements on the Pearlite Reaction, in Proceedings of an International Conference on Solid to Solid Phase Transformations, ed. by H.I. Aaronson (TMS-AIME, Warrendale, 1982), p. 789–806Google Scholar
  19. 19.
    H.K.D.H. Bhadeshia, D.V. Edmonds, The Bainite Transformation in a Silicon Steel. Metall. Trans. A 10, 895 (1979)CrossRefGoogle Scholar
  20. 20.
    B.C. De Cooman, Structure-Properties Relationship in TRIP Steels Containing Carbide-Free Bainite. Curr. Opin. Solid State Mater. Sci. 8, 285 (2004)CrossRefGoogle Scholar
  21. 21.
    H. Dierkes, R. Dronskowski, High-Resolution Powder Neutron Diffraction on Mn3C. Zeitschrift Fur Anorg. Und Allg. Chemie 640, 3148 (2014)CrossRefGoogle Scholar
  22. 22.
    J.D. Verhoeven, Fundamentals of Physical Metallurgy (Wiley, New York, 1975), p. 458Google Scholar
  23. 23.
    C.R. Hutchinson, R.E. Hackenberg, G.J. Shiflet, The Growth of Partitioned Pearlite in Fe–C–Mn Steels. Acta Mater. 52, 3565 (2004)CrossRefGoogle Scholar
  24. 24.
    N.A. Razik, G.W. Lorimer, N. Ridley, An Investigation of Manganese Partitioning During the Austenite–Pearlite Transformation Using Analytical Electron Microscopy. Acta Met. 22, 1249 (1974)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and ASM International 2017

Authors and Affiliations

  1. 1.Institute of Physics Rosario CONICET-UNRRosarioArgentina
  2. 2.Materials Engineering DepartmentUniversidad de ConcepciónConcepciónChile

Personalised recommendations