Skip to main content

Advertisement

Log in

Effect of Annealing on the Microstructure and Mechanical Properties of a Low-Carbon Steel with Ultrafine Grains

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The microstructures and properties of the ultrafine-grained low-carbon steel were investigated. Martensite microstructure was obtained by quenching a low-carbon steel, followed by 50% strain cold rolling and then annealing at 500–650 °C for 2 and 30 min, respectively. Microstructures were observed, and tensile properties were measured for the specimens treated with cold rolling and annealing. The effects of annealing parameters on the microstructure and mechanical properties were analyzed. It shows that the microstructure of specimen annealed at 550 °C for 30 min consists of ferrite grains with an average size of 330 nm. The ultrafine-grained low-carbon steel exhibits not only high tensile strength (867 MPa), but also good elongation (16.7%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.L. Shaw, Processing nanostructured materials: an overview. JOM 52(12), 41–45 (2000)

    Article  Google Scholar 

  2. R. Saha, R. Ueji, N. Tsuji, Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scripta Mater. 68(10), 813–816 (2013)

    Article  Google Scholar 

  3. Y.Z. Tian, L.J. Zhao, S. Chen, D. Terada, A. Shibata, N. Tsuji, Optimizing strength and ductility in Cu–Al alloy with recrystallized nanostructures formed by simple cold rolling and annealing. J. Mater. Sci. 49(19), 6629–6639 (2014)

    Article  Google Scholar 

  4. J. Hu, L.X. Du, H. Xie, P. Yu, R.D.K. Misra, A nanograined/ultrafine-grained low-carbon microalloyed steel processed by warm rolling. Mater. Sci. Eng., A 605(605), 186–191 (2014)

    Article  Google Scholar 

  5. N. Tsuji, K. Shiotsuki, H. Utsunomiya, Y. Satio, Low temperature superplasticity of ultra-fine grained 5083 aluminium alloy produced by accumulative roll-bonding. Mater. Sci. Forum 304, 73–78 (1999)

    Article  Google Scholar 

  6. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultrafine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Mater. 39(9), 1221–1227 (1998)

    Article  Google Scholar 

  7. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng., A 168(2), 141–148 (1993)

    Article  Google Scholar 

  8. M. Furukawa, Z. Horita, M. Nemoto, Fabrication of submicrometer-grained Zn–22% Al by torsion straining. J. Mater. Res. 11(9), 2128–2130 (1996)

    Article  Google Scholar 

  9. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, T.G. Langdon, Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater. 35(2), 143–146 (1996)

    Article  Google Scholar 

  10. A. Belyakov, Y. Sakai, T. Hara, Y. Kimura, K. Tsuzaki, Effect of dispersed particles on microstructure evolved in iron under mechanical milling followed by consolidating rolling. Metal. Mater. Trans. A 32(7), 1769–1776 (2001)

    Article  Google Scholar 

  11. Y. Okitsu, N. Takata, N. Tsuji, A new route to fabricate ultrafine-grained structures in carbon steels without severe plastic deformation. Scripta Mater. 60(2), 76–79 (2009)

    Article  Google Scholar 

  12. L.X. Sun, N.R. Tao, M. Kuntz, J.Q. Yu, K. Luet, Annealing-induced hardening in a nanostructured low-carbon steel prepared by using dynamic plastic deformation. J. Mater. Sci. Technol. 30(8), 731–735 (2014)

    Article  Google Scholar 

  13. N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Mater. 46(4), 305–310 (2002)

    Article  Google Scholar 

  14. R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Mater. 50(16), 4177–4189 (2002)

    Article  Google Scholar 

  15. M. Hamzeh, A. Kermanpur, A. Najafizadeh, Fabrication of the ultrafine-grained ferrite with good resistance to grain growth and evaluation of its tensile properties. Mater. Sci. Eng. A 593(2), 24–30 (2014)

    Article  Google Scholar 

  16. H. Ashrafi, A. Najafizadeh, Fabrication of the ultrafine grained low carbon steel by cold compression and annealing of martensite. T. Indian I. Metals 69(8), 1467–1473 (2016)

    Article  Google Scholar 

  17. S. Morito, H. Saito, T. Ogawa, T. Furuhara, T. Maki, Effect of austenite grain size on the morphology and crystallography of lath martensite in low carbon steels. ISIJ Int. 45(1), 91–94 (2005)

    Article  Google Scholar 

  18. A.S. Schulz-Beenken, Martensite in steels: its significance, recent developments and trends. J. Phys. IV 7(5), 657–665 (1997)

    Google Scholar 

  19. H.F. Lan, W.J. Liu, X.H. Liu, Ultrafine ferrite grains produced by tempering cold-rolled Martensite in low carbon and microalloyed steels. ISIJ Int. 47(11), 1652–1657 (2007)

    Article  Google Scholar 

  20. M. Takahashi, H.K.D.H. Bhadeshia, Model for transition from upper to lower bainite. Mat. Sci. Tech. 6(7), 592–603 (1990)

    Article  Google Scholar 

  21. M. Najafi, H. Mirzadeh, M. Alibeyki, Toward unraveling the mechanisms responsible for the formation of ultrafine grained microstructure during tempering of cold rolled martensite. Mater. Sci. Eng., A 670, 252–255 (2016)

    Article  Google Scholar 

  22. F.J. Humphreys, M. Hatherly, Chapter 9–Recrystallization of Two-Phase Alloys. Recrystallization and Related Annealing Phenomena: second edition, (2004), pp. 285–319

  23. W. Lei, T.S. Wang, Z. Li, X.J. Zhang, Q.F. Wang, F.C. Zhang, A new process to fabricate ultrafine-grained low-carbon steel with high strength and high elongation. Mater. Sci. Eng., A 528(2), 784–787 (2010)

    Article  Google Scholar 

  24. T.S. Wang, Z. Li, B. Zhang, X.J. Zhang, J.M. Deng, F.C. Zhang, High tensile ductility and high strength in ultrafine-grained low-carbon steel. Mater. Sci. Eng., A 527(10–11), 2798–2801 (2010)

    Article  Google Scholar 

  25. Z.W. Hu, G. Xu, H. Yang, C. Zhang, R. Yu, The effects of cooling mode on precipitation and mechanical properties of a Ti–Nb microalloyed steel. J. Mater. Eng. Perform. 23(12), 4216–4222 (2014)

    Article  Google Scholar 

  26. F. Liu, G. Xu, Y.L. Zhang, H.J. Hu, L.X. Zhou, Z.L. Xue, In situ observations of austenite grain growth in Fe–C–Mn–Si super bainitic steel. Int. J. Miner. Metall. Mater. 20(11), 1060–1066 (2013)

    Article  Google Scholar 

  27. M.A. Neri, R. Colás, Analysis of a martensitic stainless steel that failed due to the presence of coarse carbides. Mater. Charact. 47(3), 283–289 (2001)

    Article  Google Scholar 

  28. C.Y. Lee, J. Jeong, J. Han, S.J. Lee, S. Lee, Y.K. Lee, Coupled strengthening in a medium manganese lightweight steel with an inhomogeneously grained structure of austenite. Acta Mater. 84, 1–8 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from National Natural Science Foundation of China (NSFC) (No. 51274154), the National High Technology Research and Development Program of China (No. 2012AA03A504), and State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Xu, G., Liang, W. et al. Effect of Annealing on the Microstructure and Mechanical Properties of a Low-Carbon Steel with Ultrafine Grains. Metallogr. Microstruct. Anal. 6, 233–239 (2017). https://doi.org/10.1007/s13632-017-0350-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-017-0350-0

Keywords

Navigation