Advertisement

Metallography, Microstructure, and Analysis

, Volume 6, Issue 2, pp 139–149 | Cite as

Analysis of the Cu-Al Milling Stages Through the Microstructure Evolution Studied by TEM and SEM

  • M. F. GiordanaEmail author
  • N. Muñoz-Vásquez
  • M. R. Esquivel
  • E. Zelaya
Technical Article

Abstract

Mechanical alloying of Cu-16 at.%Al and Cu-30 at.%Al was performed using both a planetary and a horizontal milling devices. The starting powders were high-purity Cu and Al. The different stages of milling were identified and characterized as initial, intermediate, final, and completion. The obtained microstructures were investigated by scanning electron microscopy and transmission electron microscopy. The evolution of the microstructure was studied considering the particle size variation. A decrease in the particle size was found as the Al content increases. The evolution of the nanostructure was studied considering the grain size variation. No marked changes on the nanostructure were detected during milling regardless either the type of mill used or composition selected. Mean grain sizes’ values found were between 10 nm and 26 nm for each stage of milling. Power consumption of the milling process was calculated at laboratory scale to analyze the chances of a potential scaling up of the milling process. Starting aggregation state, microstructure and dominant phase changes, and evolution of mechanical alloying stages were considered. Performance of milling was compared to traditional high-temperature methods to compare the advantages and disadvantages of both synthesis methods.

Keywords

Mechanical alloying Power consumption Microstructure evolution Cu-Al TEM SEM 

Notes

Acknowledgments

The authors express their thanks to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), to Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT: PICT-2011-0643 and PICT-2011-0092), and to Comisión Nacional de Energía Atómica (CNEA) for supporting this work.

References

  1. 1.
    K. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743–5774 (2003). doi: 10.1016/j.actamat.2003.08.032 CrossRefGoogle Scholar
  2. 2.
    X. Mao, D. Li, Z. Wang, X. Zhao, L. Cai, Surface nanocrystallization by mechanical punching process for improving microstructure and properties of Cu30Ni alloy. Trans. Nonferrous Met. Soc. China 23, 1694–1700 (2013). doi: 10.1016/S1003-6326(13)62650-3 CrossRefGoogle Scholar
  3. 3.
    M. Izadinia, K. Dehghani, Structure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy produced by melt spinning. Trans. Nonferrous Met. Soc. China 21, 2037–2043 (2011). doi: 10.1016/S1003-6326(11)60969-2 CrossRefGoogle Scholar
  4. 4.
    T. Chen, J.M. Hampikian, N.N. Thadhani, Synthesis and characterization of mechanically alloyed and shock-consolidated nanocrystalline NiAl intermetallic. Acta Mater. 47(8), 2567–2579 (1999). doi: 10.1016/S1359-6454(99)00059-2 CrossRefGoogle Scholar
  5. 5.
    M. Slimi, M. Azabou, L. Escoda, J.J. Suñol, M. Khitouni, Structural and microstructural properties of nanocrystalline Cu–Fe–Ni powders produced by mechanical alloying. Powder Technol. 266, 262–267 (2014). doi: 10.1016/j.powtec.2014.03.064 CrossRefGoogle Scholar
  6. 6.
    Y. Chen, Q. Wang, J. Lin, M. Liu, J. Hjelen, H.J. Roven, Grain refinement of magnesium alloys processed by severe plastic deformation. Trans. Nonferrous Met. Soc. China 24, 3747–3754 (2014). doi: 10.1016/S1003-6326(14)63528-7 CrossRefGoogle Scholar
  7. 7.
    R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881–981 (2006). doi: 10.1016/j.pmatsci.2006.02.003 CrossRefGoogle Scholar
  8. 8.
    M.K. Nazemi, S. Sheibani, F. Rashchi, V.M. Gonzalez-DelaCruz, A. Caballero, Preparation of nanostructured nickel aluminate spinel powder from spent NiO/Al2O3 catalyst by mechano-chemical synthesis. Adv. Powder Technol. 23, 833–838 (2012). doi: 10.1016/j.apt.2011.11.004 CrossRefGoogle Scholar
  9. 9.
    V. Umapathy, A. Manikandan, S. Arul Antony, P. Ramu, P. Neeraja, Structure, morphology and opto-magnetic properties of Bi2MoO6 nano-photocatalyst synthesized by sol–gel method. Trans. Nonferrous Met. Soc. China 25, 3271–3278 (2015). doi: 10.1016/S1003-6326(15)63948-6 CrossRefGoogle Scholar
  10. 10.
    Z. Tan, K. Sato, S. Ohara, Synthesis of layered nanostructured TiO2 by hydrothermal method. Adv. Powder Technol. 26, 296–302 (2015). doi: 10.1016/j.apt.2014.10.011 CrossRefGoogle Scholar
  11. 11.
    C. Suryanarayana, Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001). doi: 10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  12. 12.
    S.K. Pabi, B.S. Murty, Mechanism of mechanical alloying in NiAl and CuZn systems. Mater. Sci. Eng., A 214, 146–152 (1996). doi: 10.1016/0921-5093(96)10224-0 CrossRefGoogle Scholar
  13. 13.
    E. Zelaya, M.R. Esquivel, D. Schryvers, Evolution of the phase stability of Ni–Al under low energy ball milling. Adv. Powder Technol. 24, 1063–1069 (2013). doi: 10.1016/j.apt.2013.03.008 CrossRefGoogle Scholar
  14. 14.
    S. Pourkhorshidi, N. Parvin, M.S. Kenevisi, M. Naeimi, H. Ebrahimnia Khaniki, A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders. Mater. Sci. Eng., A 556, 658–663 (2012). doi: 10.1016/j.msea.2012.07.044 CrossRefGoogle Scholar
  15. 15.
    S.K. Vajpai, R.K. Dube, S. Sangal, Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility. Mater. Sci. Eng., A 570, 32–42 (2013). doi: 10.1016/j.msea.2013.01.063 CrossRefGoogle Scholar
  16. 16.
    J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying. Metall. Trans. 5, 1929–1934 (1974)CrossRefGoogle Scholar
  17. 17.
    L. Lu, M.O. Lai, Mechanical alloying, vol. 4 (Kluwer Academic Publishers, Boston, 1998)CrossRefGoogle Scholar
  18. 18.
    M.N. Ceron Hurtado, M.R. Esquivel, Stages of mechanical alloying during the synthesis of Sn-containing AB5-based intermetallics. Int. J. Hydrogen Energy 35, 6057–6062 (2010). doi: 10.1016/j.ijhydene.2009.12.072 CrossRefGoogle Scholar
  19. 19.
    S.A. Obregón, J.J. Andrade-Gamboa, M.R. Esquivel, Synthesis of Al-containing MmNi5 by mechanical alloying: milling stages, structure parameters and thermal annealing. Int. J. Hydrogen Energy 37, 14972–14977 (2012). doi: 10.1016/j.ijhydene.2012.01.170 CrossRefGoogle Scholar
  20. 20.
    S.M. Tang, C.Y. Chung, W.G. Liu, J. Mater. Process. Technol. 63, 307–312 (1997). doi: 10.1016/S0924-0136(96)02641-6 CrossRefGoogle Scholar
  21. 21.
    S.K. Vajpai, R.K. Dube, S. Sangal, Microstructure and properties of Cu–Al–Ni shape memory alloy strips prepared via hot densification rolling of argon atomized powder preforms. Mater. Sci. Eng., A 529, 378–387 (2011). doi: 10.1016/j.msea.2011.09.046 CrossRefGoogle Scholar
  22. 22.
    A. Evirgen, M.L. Öveçoğlu, Characterization investigations of a mechanically alloyed and sintered Al–2 wt%Cu alloy reinforced with WC particles. J. Alloys Compd. 496, 212–217 (2010). doi: 10.1016/j.jallcom.2010.02.136 CrossRefGoogle Scholar
  23. 23.
    M.A. Dvorack, N. Kuwano, S. Polat, H. Chen, C.M. Wayman, Decomposition of β1-phase Cu–AI–Ni alloy at elevated temperature. Scripta Metall. 17(11), 1333–1336 (1983)CrossRefGoogle Scholar
  24. 24.
    M. Ahlers, Martensite and equilibrium phases in Cu–Zn and Cu–Zn–Al alloys. Prog. Mater Sci. 30, 135–186 (1986)CrossRefGoogle Scholar
  25. 25.
    W. Jianxin, J. Bohong, T.Y. Hsu, Influence of grain size and ordering degree of the parent phase on MS in a Cu–Zn–Al Alloy containing boron. Acta Metall. 36, 1521–1526 (1988)CrossRefGoogle Scholar
  26. 26.
    P.M. La Roca, L.M. Isola, C.E. Sobrero, Ph Vermaut, J. Malarría, Grain size effect on thermal-induced martensitic transformation of polycrystalline Cu-based shape memory alloys. Mater. Today: Proc. 2(3), 743–746 (2015). doi: 10.1016/j.matpr.2015.07.389 CrossRefGoogle Scholar
  27. 27.
    K. Mukunthan, L.C. Brown, Preparation and properties of fine grain β-CuAlNi strain- memory alloys. Metall. Trans. A 19, 2921–2929 (1988)CrossRefGoogle Scholar
  28. 28.
    S. Samal, B. Satpati, D. Chaira, Production and dispersion stability of ultrafine Al–Cu alloy powder in base fluid. J. Alloys Compd. 504S, 389–394 (2010). doi: 10.1016/j.jallcom.2010.03.223 CrossRefGoogle Scholar
  29. 29.
    M.F. Giordana, M.R. Esquivel, E. Zelaya, A detailed study of phase evolution in Cu–16 at.%Al and Cu–30 at.%Al alloys under different types of mechanical alloying processes. Adv. Powder Technol. 26, 470–477 (2015). doi: 10.1016/j.apt.2014.12.005 CrossRefGoogle Scholar
  30. 30.
    D.V. Dudina, O.I. Lomovsky, K.R. Valeev, S.F. Tikhov, N.N. Boldyreva, A.N. Salanov, S.V. Cherepanova, V.I. Zaikovskii, A.S. Andreev, O.B. Lapina, V.A. Sadykov, Phase evolution during early stages of mechanical alloying of Cu–13 wt% Al powder mixtures in a high-energy ball mill. J. Alloys Compd. 629, 343–350 (2015). doi: 10.1016/j.jallcom.2014.12.120 CrossRefGoogle Scholar
  31. 31.
    G. Gonzalez, A. Sagarzazu, D. Bonyuet, L. D’Angelo, R. Villalba, Solid state amorphisation in binary systems prepared by mechanical alloying. J. Alloys Compd. 483, 289–297 (2009). doi: 10.1016/j.jallcom.2008.08.127 CrossRefGoogle Scholar
  32. 32.
    P.R. Swann, H. Warlimont, The electron-metallography and crystallography of copper-aluminum martensites. Acta Metall. 11(6), 511–527 (1963)CrossRefGoogle Scholar
  33. 33.
    S. Westman, Refinement of the γ-Cu9Al4 Structure. Acta Chem. Scand. 19, 1411–1419 (1965)CrossRefGoogle Scholar
  34. 34.
    M.F. Giordana, N. Muñoz-Vásquez, M. Garro-González, M.R. Esquivel, E. Zelaya, Study of the formation of Cu-24at.%Al by reactive milling, Procedia. Mater. Sci. 9C, 262–270 (2015). doi: 10.1016/j.mspro.2015.04.033 Google Scholar
  35. 35.
    R. Amini, S.M.M. Mousavizad, H. Abdollahpour, M. Ghaffari, M. Alizadeh, A.K. Okyay, Structural and microstructural phase evolution during mechano-synthesis of nanocrystalline/amorphous CuAlMn alloy powders. Adv. Powder Technol. 24, 1048–1053 (2013). doi: 10.1016/j.apt.2013.03.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York and ASM International 2017

Authors and Affiliations

  • M. F. Giordana
    • 1
    Email author
  • N. Muñoz-Vásquez
    • 2
  • M. R. Esquivel
    • 1
    • 3
  • E. Zelaya
    • 1
  1. 1.Centro Atómico Bariloche.BarilocheArgentina
  2. 2.Instituto BalseiroCentro Atómico Bariloche, ANPCyTBarilocheArgentina
  3. 3.Centro Regional Universitario BarilocheUniversidad Nacional del Comahue.BarilocheArgentina

Personalised recommendations