Metallography, Microstructure, and Analysis

, Volume 5, Issue 1, pp 50–61 | Cite as

Effects of Various Post-Weld Heat Treatments on Austenite and Carbide Formation in a 13Cr4Ni Steel Multipass Weld

  • Mohsen Mokhtabad Amrei
  • Hossein Monajati
  • Denis Thibault
  • Yves Verreman
  • Philippe Bocher
Technical Article

Abstract

Multipass welding procedures are common methods for 13Cr4Ni steels' fabrication and repairs. Compared to a single-pass weld procedure, the weld microstructure in a multipass weld is more heterogeneous due to the complex local thermal cycles imposed by adjacent weld passes. Furthermore, the final microstructure and mechanical properties of these steels are very sensitive to their thermal history which increases the microstructure heterogeneities. Thus, post-weld heat treatments are performed to reduce heterogeneities and produce a relatively homogenous weld. It has been found that the best option to improve mechanical properties of 13Cr4Ni steels is forming a “room temperature stable austenite” phase by heat treatments. This study focuses on the effects of these post-weld heat treatments on the austenite phase and carbide formations and the related evolutions of microhardness distribution. The study shows that nanometer-size carbides form at martensite lath interfaces and sub-block boundaries, and then at higher temperatures austenite lamellae appear at these locations. Results also show that the highest percentage of stable austenite achievable by a single-stage tempering was obtained at 610 °C. When the heat treatment temperature is lower than 610 °C, longer holding time produces softer steel while longer heat treatments at temperatures higher than 610 °C, produces harder steel. Still, double-stage heat treatments are more effective and produce the highest percentage of austenite and the lowest hardness of all heat treatments.

Keywords

13Cr4NiMo steel Multipass weld Post-weld heat treatment Tempering Hardness Reversed austenite Carbides 

References

  1. 1.
    J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Wiley, New York, 2005)Google Scholar
  2. 2.
    E. Folkhard, Welding Metallurgy of Stainless Steels (Springer, Berlin, 1988)CrossRefGoogle Scholar
  3. 3.
    S. Morito, Y. Adachi, T. Ohba, Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel. Mater. Trans. 50(8), 1919–1923 (2009)CrossRefGoogle Scholar
  4. 4.
    S. Morito et al., The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51(6), 1789–1799 (2003)CrossRefGoogle Scholar
  5. 5.
    Y.Y. Song et al., Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Mater. Sci. Eng. A (Struct. Mater. Prop. Microstruct. Process.) 527(3), 614–618 (2010)CrossRefGoogle Scholar
  6. 6.
    P.D. Bilmes, M. Solari, C.L. Llorente, Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact. 46(4), 285–296 (2001)CrossRefGoogle Scholar
  7. 7.
    Y.A. Sagalevich, Y.M. Potak, V.V. Sachkov, The Effect of Delta-Ferrite on the Properties of Low-Carbon Martensite Stainless Steels, No. FTD-MT-24-385-69 (Foreign Technology Div Wright-Patterson AFB, Dayton, OH, 1970)Google Scholar
  8. 8.
    M.M. Amrei, et al., Microstructure characterization of single and multipass 13Cr4Ni steel welded joints. Metallogr. Microstruct. Anal. 4(3), 207–218 (2015)Google Scholar
  9. 9.
    D. Thibault et al., Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method. Mater. Sci. Eng. A 527(23), 6205–6210 (2010)CrossRefGoogle Scholar
  10. 10.
    W. Wu et al., Relationship between alloying elements and retained austenite in martensitic stainless steel welds. Scr. Mater. 42(Compendex), 1071–1076 (2000)CrossRefGoogle Scholar
  11. 11.
    G.F.V. Voort, Martensite and retained austenite. Indus. Heat. 76(The Institution of Engineering and Technology), 51–54 (2009)Google Scholar
  12. 12.
    M.C. Tsai et al., Phase transformation in AISI 410 stainless steel. Mater. Sci. Eng. A (Struct. Mater. Prop. Microstruct. Process.) 332(1–2), 1–10 (2002)CrossRefGoogle Scholar
  13. 13.
    D. Thibault et al., Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel. Mater. Sci. Eng. A 528(21), 6519–6526 (2010)CrossRefGoogle Scholar
  14. 14.
    D. Thibault et al., Reformed austenite transformation during fatigue crack propagation of 13%Cr–4%Ni stainless steel. Mater. Sci. Eng. A 528(21), 6519–6526 (2011)CrossRefGoogle Scholar
  15. 15.
    ASTM A743/A743M-03, Standard Specification for Castings, Iron-Chromium, Iron-Chromium-Nickel, Corrosion Resistant, for General Application (ASTM International, 2003)Google Scholar
  16. 16.
    P.D. Bilmes, C. Llorente, J. Perez, Ipina, Toughness and microstructure of 13Cr4NiMo high-strength steel welds. J. Mater. Eng. Perform. 9(6), 609–615 (2000)CrossRefGoogle Scholar
  17. 17.
    I.D.R. Hydro-Québec, Scompi robot, robotic system for generating station work, U.S. Patent, Editor. 2011, CanadaGoogle Scholar
  18. 18.
    G.F. Vander Voort, ed., Chemical and electrolytic polishing, in ASM Handbook, Vol. 9: Metallography and Microstructures (ASM International, 2004), pp. 281–293Google Scholar
  19. 19.
    H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)CrossRefGoogle Scholar
  20. 20.
    M.M. Amrei et al., Microstructure characterization and hardness distribution of 13Cr4Ni multipass weld metal. Mater. Charact. 111, 128–136 (2016)CrossRefGoogle Scholar
  21. 21.
    S. Godin, Effet D’un Enrichissement en Nickel Sur la Stabilité Mécanique de L’austénite de Réversion Lorsque Soumise À de La Fatigue Oligocyclique (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York and ASM International 2016

Authors and Affiliations

  • Mohsen Mokhtabad Amrei
    • 1
  • Hossein Monajati
    • 1
  • Denis Thibault
    • 2
  • Yves Verreman
    • 3
  • Philippe Bocher
    • 1
  1. 1.École de Technologie SupérieureMontréalCanada
  2. 2.Institut de recherche d’Hydro-QuébecVarennesCanada
  3. 3.École Polytechnique de MontréalMontréalCanada

Personalised recommendations