Skip to main content
Log in

Effects of Various Post-Weld Heat Treatments on Austenite and Carbide Formation in a 13Cr4Ni Steel Multipass Weld

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Multipass welding procedures are common methods for 13Cr4Ni steels' fabrication and repairs. Compared to a single-pass weld procedure, the weld microstructure in a multipass weld is more heterogeneous due to the complex local thermal cycles imposed by adjacent weld passes. Furthermore, the final microstructure and mechanical properties of these steels are very sensitive to their thermal history which increases the microstructure heterogeneities. Thus, post-weld heat treatments are performed to reduce heterogeneities and produce a relatively homogenous weld. It has been found that the best option to improve mechanical properties of 13Cr4Ni steels is forming a “room temperature stable austenite” phase by heat treatments. This study focuses on the effects of these post-weld heat treatments on the austenite phase and carbide formations and the related evolutions of microhardness distribution. The study shows that nanometer-size carbides form at martensite lath interfaces and sub-block boundaries, and then at higher temperatures austenite lamellae appear at these locations. Results also show that the highest percentage of stable austenite achievable by a single-stage tempering was obtained at 610 °C. When the heat treatment temperature is lower than 610 °C, longer holding time produces softer steel while longer heat treatments at temperatures higher than 610 °C, produces harder steel. Still, double-stage heat treatments are more effective and produce the highest percentage of austenite and the lowest hardness of all heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.C. Lippold, D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels (Wiley, New York, 2005)

    Google Scholar 

  2. E. Folkhard, Welding Metallurgy of Stainless Steels (Springer, Berlin, 1988)

    Book  Google Scholar 

  3. S. Morito, Y. Adachi, T. Ohba, Morphology and crystallography of sub-blocks in ultra-low carbon lath martensite steel. Mater. Trans. 50(8), 1919–1923 (2009)

    Article  Google Scholar 

  4. S. Morito et al., The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 51(6), 1789–1799 (2003)

    Article  Google Scholar 

  5. Y.Y. Song et al., Microstructural evolution and low temperature impact toughness of a Fe-13%Cr-4%Ni-Mo martensitic stainless steel. Mater. Sci. Eng. A (Struct. Mater. Prop. Microstruct. Process.) 527(3), 614–618 (2010)

    Article  Google Scholar 

  6. P.D. Bilmes, M. Solari, C.L. Llorente, Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals. Mater. Charact. 46(4), 285–296 (2001)

    Article  Google Scholar 

  7. Y.A. Sagalevich, Y.M. Potak, V.V. Sachkov, The Effect of Delta-Ferrite on the Properties of Low-Carbon Martensite Stainless Steels, No. FTD-MT-24-385-69 (Foreign Technology Div Wright-Patterson AFB, Dayton, OH, 1970)

  8. M.M. Amrei, et al., Microstructure characterization of single and multipass 13Cr4Ni steel welded joints. Metallogr. Microstruct. Anal. 4(3), 207–218 (2015)

  9. D. Thibault et al., Residual stress characterization in low transformation temperature 13%Cr–4%Ni stainless steel weld by neutron diffraction and the contour method. Mater. Sci. Eng. A 527(23), 6205–6210 (2010)

    Article  Google Scholar 

  10. W. Wu et al., Relationship between alloying elements and retained austenite in martensitic stainless steel welds. Scr. Mater. 42(Compendex), 1071–1076 (2000)

    Article  Google Scholar 

  11. G.F.V. Voort, Martensite and retained austenite. Indus. Heat. 76(The Institution of Engineering and Technology), 51–54 (2009)

    Google Scholar 

  12. M.C. Tsai et al., Phase transformation in AISI 410 stainless steel. Mater. Sci. Eng. A (Struct. Mater. Prop. Microstruct. Process.) 332(1–2), 1–10 (2002)

    Article  Google Scholar 

  13. D. Thibault et al., Reformed austenite transformation during fatigue crack propagation of 13%Cr-4%Ni stainless steel. Mater. Sci. Eng. A 528(21), 6519–6526 (2010)

    Article  Google Scholar 

  14. D. Thibault et al., Reformed austenite transformation during fatigue crack propagation of 13%Cr–4%Ni stainless steel. Mater. Sci. Eng. A 528(21), 6519–6526 (2011)

    Article  Google Scholar 

  15. ASTM A743/A743M-03, Standard Specification for Castings, Iron-Chromium, Iron-Chromium-Nickel, Corrosion Resistant, for General Application (ASTM International, 2003)

  16. P.D. Bilmes, C. Llorente, J. Perez, Ipina, Toughness and microstructure of 13Cr4NiMo high-strength steel welds. J. Mater. Eng. Perform. 9(6), 609–615 (2000)

    Article  Google Scholar 

  17. I.D.R. Hydro-Québec, Scompi robot, robotic system for generating station work, U.S. Patent, Editor. 2011, Canada

  18. G.F. Vander Voort, ed., Chemical and electrolytic polishing, in ASM Handbook, Vol. 9: Metallography and Microstructures (ASM International, 2004), pp. 281–293

  19. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)

    Article  Google Scholar 

  20. M.M. Amrei et al., Microstructure characterization and hardness distribution of 13Cr4Ni multipass weld metal. Mater. Charact. 111, 128–136 (2016)

    Article  Google Scholar 

  21. S. Godin, Effet D’un Enrichissement en Nickel Sur la Stabilité Mécanique de L’austénite de Réversion Lorsque Soumise À de La Fatigue Oligocyclique (2014)

Download references

Acknowledgments

The authors would like to acknowledge Natural Sciences and Engineering Research Council of Canada (NSERC), Institut de Recherche d’Hydro-Québec (IREQ), Alstom Power Co., and École de Technologie Supérieure (ÉTS) for the technical and financial supports. The authors are grateful to ÉTS and IREQ metallography laboratory for austenite electropolishing and metallography studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Mokhtabad Amrei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrei, M.M., Monajati, H., Thibault, D. et al. Effects of Various Post-Weld Heat Treatments on Austenite and Carbide Formation in a 13Cr4Ni Steel Multipass Weld. Metallogr. Microstruct. Anal. 5, 50–61 (2016). https://doi.org/10.1007/s13632-015-0251-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0251-z

Keywords

Navigation