Skip to main content

Advertisement

Log in

Effect of Solution Treatment on Mechanical and Corrosion Behaviors of 6082-T6 Al Alloy

  • Technical Note
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The mechanical and corrosion behavior of Al alloy 6082-T6 subjected to solution heat treating condition at temperatures varying from 400 to 600 °C and soaking times of 3–24 h have been investigated. Solution heat treating at 550 °C for 24 h led to the dissolution of the Mg2Si and AlSi6Mg3Fe precipitates into the matrix, and the Al12(FeMn)3Si2 phase transformed into Al85(Fe0.28Mn0.72)14Si phase. The solution-treated alloy showed equiaxed grain morphology with an average grain size of 85.7 µm. Increasing the solution heat treating temperature beyond 550 °C caused a reduction in corrosion resistance of the alloy. The pitting potential increased due to the presence of the anodic phase Mg2Si (dissolved at 550 °C) in Al matrix and it decreased with the formation of cathodic phases such as AlSi6Mg3Fe and Al12(FeMn)3Si2 (dissolved at 550 °C/24 h) in the alloy. General corrosion resistance of the alloy increased with decreasing Mg2Si concentration in the Al matrix. The optimum solution heat treating condition of 550 °C for 24 h resulted in an improvement in hardness (63 VHN), ultimate tensile strength (UTS—208 MPa), and pitting potential (−675 mV) and uniform corrosion potential (−1.255 mV) of 6082 Al alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Hong, Z. Gang, L.C. Ming, Z. Liang, Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys. Trans. Nonferrous Met. Soc. China 16, 376–381 (2006)

    Article  Google Scholar 

  2. W.S. Miller, L. Zhuang, J. Bottema, J. Wittebrood, P.D. Smet, A. Haszler, A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 280, 37–49 (2006)

    Article  Google Scholar 

  3. S.M. Hirth, G.J. Marshall, S.A. Court, D.J. Lloyd, Effects of Si on the aging behavior and formability of aluminium alloys based on AA6016. Mater. Sci. Eng. A 319–321, 452–456 (2001)

    Article  Google Scholar 

  4. A. Aytac, B. Dascilar, M. Usta, The effect of extrusion speed on the structure and corrosion properties of aged and non-aged 6063 aluminum alloy. Mater. Chem. Phys. 130, 1357–1360 (2011)

    Article  Google Scholar 

  5. Y. Birol, The effect of homogenization practice on the microstructure of AA6063 billets. J. Mater. Process. Technol. 148, 250–258 (2004)

    Article  Google Scholar 

  6. M. Cai, J.D. Robson, G.W. Lormier, N.C. Parson, Simulation of the casting and homogenization of two 6xxx series alloys. Mater. Sci. Forum 396-402, 209–214 (2002)

    Article  Google Scholar 

  7. Y.L. Ji, F.N. Guo, Y.F. Pan, Microstructural characteristics and paint-bake response of Al-Mg-Si-Cu alloy. Trans. Nonferrous Met. Soc. China 18, 126–131 (2008)

    Article  Google Scholar 

  8. E.B. Bjornbakk, J.A. Saeter, O. Reiso, F. Tundal, The influence of homogenisation cooling rate, billet preheating temperature and die geometry on the T5-properties for three 6xxx alloys extruded under industrial conditions. Mater. Sci. Forum 396–402, 405–410 (2002)

    Article  Google Scholar 

  9. L. Hong, Z. Gang, L.C. Ming, Z. Liang, Effect of Mn addition on microstructures and properties of Al-Mg-Si-Cu system alloys for automotive body sheets. J. Northeast. Univ. 4, 347–350 (2005)

    Google Scholar 

  10. N.C.W. Kujipers, F.J. Vermolen, C. Vuik, P.T.G. Koenis, K.E. Nilsen, S.V. Zwaag, The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater. Sci. Eng. A 394, 9–19 (2005)

    Article  Google Scholar 

  11. P.N. Rao, B. Viswanadh, R. Jayaganthan, Effect of cryorolling and warm rolling on precipitation evolution in Al 6061 alloy. Mater. Sci. Eng. A 606, 1–10 (2014)

    Article  Google Scholar 

  12. M. Abdulstaar, M. Mhaede, L. Wagner, M. Wollmann, Corrosion behaviour of Al 1050 severely deformed by rotary swaging. Mater. Des. 57, 325–329 (2014)

    Article  Google Scholar 

  13. N. Birbilis, R.G. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. J. Electrochem. Soc. 152, 140–415 (2005)

    Article  Google Scholar 

  14. N. Birbilis, M.K. Cavanaugh, R.G. Buchhiet, Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651. Corros. Sci. 48, 4202–4215 (2006)

    Article  Google Scholar 

  15. M.K. Cavanaugh, R.G. Buchhiet, N. Birbilis, Evaluation of a simple microstructural-electrochemical model for corrosion damage accumulation in microstructurally complex aluminum alloys. Eng. Fract. Mech. 76, 641–650 (2009)

    Article  Google Scholar 

  16. Q. Meng, G.S. Frankel, Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. J. Electrochem. Soc. 151, 271–283 (2004)

    Article  Google Scholar 

  17. O. Reiso, N. Ryum, J. Strid, Melting of secondary-phase particles in Al–Mg–Si alloys. Metall. Trans. A 24(1), 2629–2641 (1993)

    Article  Google Scholar 

  18. S.N. Samaras, G.N. Haidemenopoulos, Modelling of microsegregation and homogenization of 6061 extrudable Al-alloy. J. Mater. Process. Technol. 194(1–3), 63–73 (2007)

    Article  Google Scholar 

  19. L. Hong, L.Y. Hua, Z. Gang, L.C. Ming, Z. Liang, Effects of Mn on constituents of Al–Mg–Si–Cu alloys. Chin. J. Nonferrous Met. 11, 1906–1911 (2004)

    Google Scholar 

  20. J.T. Wang, J.Z. Cui, L.X. Ma, J. Xi’an Univ. Archit. Technol. 24, 325–329 (1992)

    Google Scholar 

  21. M. Tercelj, M. Fazarinc, G. Kugler, I. Perus, Influence of the chemical composition and process parameters on the mechanical properties of an extruded aluminium alloy for highly loaded structural parts. Constr. Build. Mater. 44, 781–791 (2013)

    Article  Google Scholar 

  22. Y. Wu, J. Xiong, R. Lai, X. Zhang, Z. Guo, The microstructure evolution of an Al–Mg–Si–Mn–Cu–Ce alloy during homogenization. J. Alloy. Compd. 475, 332–338 (2009)

    Article  Google Scholar 

  23. L.Z. Yan, Y.A. Zhang, X.W. Li, Z.H. Li, F. Wang, H.W. Liu, B.Q. Xiong, Microstructural evolution of Al–0.66Mg–0.85Si alloy during homogenization. Trans. Nonferrous Met. Soc. China 24, 939–945 (2014)

    Article  Google Scholar 

  24. Y. Birol, Optimization of homogenization for a low alloyed AlMgSi alloy. Mater. Charact. 80, 69–75 (2013)

    Article  Google Scholar 

  25. M. Cai, J.D. Robson, G.W. Lorimer, N.C. Parson, Simulation of the casting and homogenization of two 6xxx series alloys. Mater. Sci. Forum 396–402, 209–214 (2002)

    Article  Google Scholar 

  26. L. Lodgaard, N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater. Sci. Eng. A 283, 144–152 (2000)

    Article  Google Scholar 

  27. S.N. Samaras, G.N. Haidemenopoulos, Modelling of microsegregation and homogenization of 6061 extrudable Al-alloy. J. Mater. Process. Technol. 194, 63–73 (2007)

    Article  Google Scholar 

  28. Y. Birol, S. Akdi, Cooling slope casting to produce EN AW 6082 forging stock for manufacture of suspension components. Trans. Nonferrous Met. Soc. China 24, 1674–1682 (2014)

    Article  Google Scholar 

  29. L. Hong, Z. Gang, L.C. Ming, Z. Liang, Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys. Trans. Nonferrous Met. Soc. China 16, 376–381 (2006)

    Article  Google Scholar 

  30. Y. Takayama, J.A. Szpunar, Stored energy and taylor factor relation in an Al-Mg-Mn alloy sheet worked by continuous cyclic bending. Mater. Trans. 45, 2316–2325 (2004)

    Article  Google Scholar 

  31. R. Shabadi, S. Kumar, H.J. Roven, E.S. Dwarakadasa, Effect of specimen condition, orientation and alloy composition on PLC band parameters. Mater. Sci. Eng. A 382, 203–208 (2004)

    Article  Google Scholar 

  32. N. Birbilis, R.G. Buchheit, Electrochemical characteristics of intermetallic phases in aluminum alloys. J. Electrochem. Soc. 152(4), B140–B151 (2005)

    Article  Google Scholar 

  33. L.Z. Feng, W.Z. Ling, L.J. Feng, L.C. Xing, T. Xing, Z. Zhao, Z.Z. Qiao, Corrosion mechanism associated with Mg2Si and Si particles in Al–Mg–Si alloys. Trans. Nonferrous Met. Soc. China 21, 2559–2567 (2011)

    Article  Google Scholar 

  34. D.K. Xu, N. Birbilis, D. Lashansky, P.A. Rometsch, B.C. Muddle, Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150. Optimisation for corrosion resistance. Corros. Sci. 53, 217–225 (2011)

    Article  Google Scholar 

  35. R. Ambat, A.J. Davenport, Effect of Precipitation on the Electrochemical Behavior of Model Aluminum Alloys (Geoff M. Scamans and Andreas Afseth, Banbury Laboratory, Alcan International, Banbury, UK)

  36. K. Jones, D.W. Hoeppner, Pit-to-crack transition in pre-corroded 7075-T6 aluminum alloy under cyclic loading. Corros. Sci. 47, 2185–2198 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Goel, S., Jayaganthan, R. et al. Effect of Solution Treatment on Mechanical and Corrosion Behaviors of 6082-T6 Al Alloy. Metallogr. Microstruct. Anal. 4, 411–422 (2015). https://doi.org/10.1007/s13632-015-0219-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0219-z

Keywords

Navigation