Skip to main content
Log in

Corrosion Behavior of TiC and (Ti,W)C-Reinforced Fe-17Mn and Fe-17Mn-3Al Austenitic Steel Matrix In Situ Composites

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The corrosion behavior of Fe-17Mn and Fe-17Mn-3Al austenitic steel matrix composites reinforced with TiC and (Ti,W)C particles, during exposure to a 3.5% NaCl aqueous solution has been reported. The corrosion behavior of these composites has been evaluated by potentiodynamic polarization curves and linear polarization resistance measurements at a scan rate of 1 mV/s at room temperature (25 ± 2 °C). Tafel extrapolation technique has been used in calculating the corrosion current density (I corr) and corrosion potential (E corr). It has been observed that the corrosion resistance of the composites is less than that of their corresponding unreinforced matrix materials. The corrosion resistance increases with the addition of aluminum. The corrosion resistance of (Ti,W)C-reinforced composite is more than that of TiC-reinforced composite in the case of Fe-17Mn matrix while the same is not very different in the case of TiC and (Ti,W)C-reinforced Fe-17Mn-3Al austenitic steel matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Metzger, S.G. Fishman, Corrosion of aluminum-matrix composites. Status report. Ind. Eng. Chem. Prod. Res. Dev. 22, 296–302 (1983)

    Article  Google Scholar 

  2. C. Chen, F. Mansfeld, Corrosion protection of an Al 6092/SiCP metal matrix composite. Corrosion Sci. 39, 1075–1082 (1997)

    Article  Google Scholar 

  3. S.L. Coleman, V.D. Scott, B. McEnaney, Corrosion behaviour of aluminium-based metal matrix composites. J. Mater. Sci. 29, 2826–2834 (1994)

    Article  Google Scholar 

  4. V.K. Rai, R. Srivastava, S.K. Nath, S. Ray, Wear in cast titanium carbide reinforced ferrous composites under dry sliding. Wear 231, 265–271 (1999)

    Article  Google Scholar 

  5. D. Vallauri, I.C. Atías Adrián, A. Chrysanthou, TiC-TiB2 composites: a review of phase relationships, processing and properties. J. Eur. Cer. Soc. 28, 1697–1713 (2008)

    Article  Google Scholar 

  6. H.Y. Wang, Q.C. Jiang, B.X. Ma, Y. Wang, F. Zhao, Reactive infiltration synthesis of TiB2–TiC particulates reinforced steel matrix composites. J. Alloys Compd. 391, 55–59 (2005)

    Article  Google Scholar 

  7. Y. Wang, Z.Q. Zhang, H.Y. Wang, B.X. Ma, Q.C. Jiang, Effects of residual F content in a sealed melting furnace on experimental results of cover gas research for magnesium alloys. Mater. Sci. Eng. A 422, 339–345 (2006)

    Article  Google Scholar 

  8. A. Trueman, D.P. Schweinsberg, G.A. Hope, The matrix corrosion of tungsten carbide/carbon steel metal matrix composites. Corrosion Sci. 39, 1153–1164 (1997)

    Article  Google Scholar 

  9. K.H. Lo, C.T. Kwok, F.T. Cheng, H.C. Man, Corrosion resistance of laser-fabricated metal-matrix composite layer on stainless steel 316L. J. Laser Appl. 15, 107–114 (2003)

    Article  Google Scholar 

  10. E. Pagounis, V.K. Lindroos, Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Eng. A 246, 221–234 (1998)

    Article  Google Scholar 

  11. Tang Luping, SP Swedish National Testing and Research Institute Building Technology SP Report (2002) 25

  12. M. Debata, G.S. Upadhyaya, Corrosion behavior of powder metallurgy Y2O3 dispersed iron-and nickel-base superalloys. J. Mater. Eng. Perform. 10, 602–607 (2001)

    Article  Google Scholar 

  13. M. Stern, The mechanism of passivating-type inhibitors. J. Electrochem. Soc. 105, 638–647 (1958)

    Article  Google Scholar 

  14. A.C. Ciubotariu, L. Benea, M. Lakatos-Varsanyi, V. Dragan, Electrochemical impedance spectroscopy and corrosion behaviour of Al2O3-Ni nano composite coatings. Electrochem. Acta 53, 4557–4563 (2008)

    Article  Google Scholar 

  15. G.E. Thompson, G.C. Wood, The effect of alternating voltage on aluminium electrodes in hydrochloric acid. Corrosion Sci. 18, 721–746 (1978)

    Article  Google Scholar 

  16. G.E. Thompson, P.E. Doherty, G.C. Wood, Observations of flaws on preconditioned aluminum surfaces. J. Electrochem. Soc. 129, 1515–1517 (1982)

    Article  Google Scholar 

  17. R.T. Foley, Localized corrosion of aluminum alloys—a review. Corrosion 42, 277–284 (1986)

    Article  Google Scholar 

  18. P.P. Trzaskoma, E. McCafferty, C.R. Crowe, Corrosion behavior of SiC/Al metal matrix composites. J. Electrochem. Soc. 130, 1804–1809 (1983)

    Article  Google Scholar 

  19. D.G. Kolman, D.P. Butt, Corrosion behavior of a novel SiC/Al2O3/Al composite exposed to chloride environments. J. Electrochem. Soc. 144, 3785–3791 (1997)

    Article  Google Scholar 

  20. P. Schmuki, H. Hildebrand, A. Friedrich, S. Virtanen, The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion. Corros. Sci. 47, 1239–1250 (2005)

    Article  Google Scholar 

  21. G.S. Eklund, Initiation of pitting at sulfide inclusions in stainless steel. J. Electrochem. Soc. 121, 467–473 (1974)

    Article  Google Scholar 

  22. D.E. Williams, R.K. Matt, C. John, G.I.N. Waterhouse, Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion. Corros. Sci. 52, 3702–3716 (2010)

    Article  Google Scholar 

  23. J. Stewart, D.E. Williams, The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions. Corros. Sci. 33, 457–474 (1992)

    Article  Google Scholar 

  24. M.A. Baker, J.E. Castle, The initiation of pitting corrosion of stainless steels at oxide inclusions. Corros. Sci. 33, 1295–1312 (1992)

    Article  Google Scholar 

  25. Y. Shimizu, T. Nishimura, I. Matsushima, Corrosion resistance of Al-based metal matrix composites. Mater. Sci. Eng. A198, 113–118 (1995)

    Article  Google Scholar 

  26. P.P. Trzaskoma, Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion 46, 402–409 (1990)

    Article  Google Scholar 

  27. D. Nath, T.K.G. Namboodhiri, Some corrosion characteristics of aluminium-mica particulate composites. Corrosion Sci. 29, 1215–1229 (1989)

    Article  Google Scholar 

  28. H.Y. Yao, R.Z. Zhu, Interfacial preferential dissolution on silicon carbide particulate/aluminum composites. Corrosion 54, 499–503 (1998)

    Article  Google Scholar 

  29. H. Sun, E.Y. Koo, H.G. Wheat, Corrosion behavior of SiCp/6061 Al metal matrix composites. Corrosion 47, 741–753 (1991)

    Article  Google Scholar 

  30. Y. Fu, Y.W. Gu, H. Du, SiC whisker toughened Al2O3-(Ti, W)C ceramic matrix composites. Scripta Mater. 44, 111–116 (2001)

    Article  Google Scholar 

  31. R. Castro, P. Garnier, Decomposition structures of austenitic manganese steel. Revue de Métall. 55, 24–33 (1958)

    Google Scholar 

  32. I.E. Campbell, E.M. Sherwood (eds.), High Temperature Materials and Technology, vol 324 (Wiley, New York, 1967)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Das, K., Toor, S.K. et al. Corrosion Behavior of TiC and (Ti,W)C-Reinforced Fe-17Mn and Fe-17Mn-3Al Austenitic Steel Matrix In Situ Composites. Metallogr. Microstruct. Anal. 4, 371–380 (2015). https://doi.org/10.1007/s13632-015-0213-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0213-5

Keywords

Navigation