Metallography, Microstructure, and Analysis

, Volume 4, Issue 1, pp 49–57 | Cite as

A Novel Method for Specimen Preparation and Analysis of CVD Diamond Coated Tools Using Focussed Ion Beams (FIB) and Scanning Electron Microscopy (SEM)

  • D. Berger
  • E. Uhlmann
  • I. Dethlefs
Technical Note


Investigations of the microscopic properties of chemical vapor deposited diamond coatings on tungsten carbide tools are important to understand the coating–substrate interface (Uhlmann et al. in Prod Eng Res Dev 11(2):83–86, 2004; Surf Coat Technol 131, 395–399, 2000), the coating morphology, and the properties of cracks. Commonly the microscopic properties are analyzed in the transmission electron microscope (TEM). This paper presents a novel investigation method that includes a faster specimen preparation and that offers new analyzing possibilities. It applies a well-established device combining a scanning focused ion beam (FIB) column for the preparation of the specimens and a scanning electron microscope (SEM) for the analysis of the specimen. The aim of the paper is to verify preparation parameters for which the microscopic properties of the diamond coating are preserved during the FIB preparation and to show that the SEM analysis provides the same results of microstructure and element distribution compared to the TEM analysis. Furthermore, the feasibility of new analysis methods is studied. The FIB/SEM method traces and images defects in the nanometer range like cracks, crack propagation directions, delaminations, and layer inhomogeneities directly. The bulk FIB-prepared specimens are suitable for a precise standard-based element quantification and distribution analysis using energy or wavelength (WDX) dispersive X-ray spectroscopy. Moreover, the WDX analysis distinguishes between graphite-like carbon and diamond.


FIB SEM Diamond coatings Microstructure Element distribution Delamination Crack 



We kindly acknowledge the financial support of the FIB by the EFRE-project “Nano-Werkbank”. We thank Jörg Nissen (ZELMI) for the Monte Carlo simulations and WDX analysis. We thank W. Österle from Bundesanstalt für Materialforschung und -prüfung (BAM) for providing the TEM pictures.


  1. 1.
    P.R. Munroe, The application of focused ion beam microscopy in the material science. Mater. Charact. 60, 2–13 (2009)CrossRefGoogle Scholar
  2. 2.
    I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Technol. B 26/4, 1197–1276 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Wirth, Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure in geomaterials on a nanometer scale. Chem. Geol. 261, 217–229 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Datta, Y.-R. Wu, Y.L. Wang, Gas-assisted focused-ion-beam lithography of a diamond (119) surface. Appl. Phys. Lett. 75(17), 2677–2679 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Taniguchi, N. Ohno, S. Takeda, I. Miyamoto, M. Komuro, Focused-ion-beam-assisted etching of diamond in XeF2. J. Vac. Technol. B 16(4), 2506–2510 (1998)CrossRefGoogle Scholar
  6. 6.
    Friemuth, T.: Herstellung spanender Werkzeuge, in Fortschritt-Berichte VDI, Berichte aus dem Institut für Fertigungstechnik und Spanende Werkzeugmaschinen, VDI-Verlag, Universität Hannover, German (2002)Google Scholar
  7. 7.
    G. Cabral, R.J. Gäble, J. Lindner, J. Grácio, R. Polini, A study of diamond film deposition on WC–Co inserts for graphite machining: effectiveness of SiC interlayers prepared by HFCVD. Diam. Relat. Mater. 17, 1008–1014 (2008)CrossRefGoogle Scholar
  8. 8.
    E. Uhlmann, F. Sammler, I. Meixner, D. Heinrich, F. Gansert, W. Reimers, D. Berger, I. Rieck, Analysis of residual stresses and wear mechanism of HF-CVD diamond coated cemented carbide tools. Prod. Eng. Res. Dev. (2014). doi: 10.1007/s11740-014-0580-9 Google Scholar
  9. 9.
    D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92–101 (2007)CrossRefGoogle Scholar
  10. 10.
    W. Österle, Sub-surface microstructural analysis, in Handbook of Technical Diagnostics, ed. by H. Czichos (Springer, Berlin, 2013). doi: 10.1007/978-3-642-25850-3_16
  11. 11.
    R. Dumpala, B. Ramamoorthy, M.S. Ramachandra Rao, Graded composite diamond coatings with top-layer nanocrystallinity and interfacial integrity: cross-sectional Raman mapping. Appl. Surf. Sci. 289, 545–550 (2014)CrossRefGoogle Scholar
  12. 12.
    J.C. Pivin, M. Spirckel, M. Allouard, G. Rautureau, Characterization of diamond-like films using electron probe microanalysis. Appl. Phys. Lett. 57(25), 2657–2659 (1990)CrossRefGoogle Scholar
  13. 13.
    E. Uhlmann, R. Kott, C. Hübert, Wear mechanisms of mono- and multilayer cvd diamond films. Prod. Eng. Res. Dev. 11(2), 83–86 (2004)Google Scholar
  14. 14.
    E. Uhlmann, U. Lachmund, M. Brücher, Wear behavior of HFCVD-diamond coated carbide and ceramic tools. Surf. Coat. Technol. 131, 395–399 (2000)CrossRefGoogle Scholar
  15. 15.
    F. Ahmed, Deformation and damaging mechanisms in diamond thin films bonded to ductile substrates, Ph.D. thesis, Available from Universität Erlangen-Nürnberg, Germany. Thesis completed 2012Google Scholar
  16. 16.
    R. Kott, Eigenschaften und Einsatzverhalten CVD-diamantbeschichteter hartmetallwerkszeuge, Ph.D. thesis. Available from Technische Universität Berlin, Germany. Thesis completed in 2007, in GermanGoogle Scholar

Copyright information

© Springer Science+Business Media New York and ASM International 2015

Authors and Affiliations

  1. 1.Center for Electron Microscopy (ZELMI)Technische Universität BerlinBerlinGermany
  2. 2.Institute for Machine Tools and Factory ManagementTechnische Universität BerlinBerlinGermany

Personalised recommendations