Skip to main content

Advertisement

Log in

Fatigue Crack Propagation and Fracture Toughness of Laser Rapid Manufactured Structures of AISI 316L Stainless Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Fatigue crack propagation, fracture toughness, and impact toughness of AISI 316L stainless steel fabricated by laser rapid manufacturing with a continuous wave CO2 laser have been systematically studied. Charpy impact toughness of laser rapid manufactured structures was found to be on par with its wrought counterpart. Steady state fatigue crack growth rate in laser rapid manufactured compact tension specimens of AISI 316L stainless steel, in the investigated stress intensity range (ΔK) of 11.4–24 MPa √m, was comparable to that of 20% cold worked wrought AISI 316 stainless steel. Fatigue crack propagation was found to be transgranular in nature. The initiation fracture toughness (J 0.2) was found to be in the range of 147–259 kJ/m2 while critical crack tip opening displacement (CTODc) fracture toughness values were found to be in the range of 0.5–0.64 mm. Fracture toughness values of laser rapid manufactured structures, although inferior to wrought 316 stainless steel, were comparable to that of its weld metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Laser Engineered Net Shaping, http://www.sandia.gov/mst/pdf/LENS.pdf. Accessed 7 Dec 2012

  2. P.L. Blackwell, A. Wisbey, Laser-aided manufacturing technologies: their application to the near-net shape forming of a high-strength titanium alloy. J. Mater. Process. Technol. 170, 268–276 (2005)

    Article  Google Scholar 

  3. F. Wang, J. Mei, Wu Xinhua, Direct laser fabrication of Ti 6Al 4V/TiB. J. Mater. Process. Technol. 195, 321–326 (2008)

    Article  Google Scholar 

  4. Robert P. Mugde, Nicholas R. Wald, Laser engineered net shaping advances additive manufacturing and repair. Weld. J. 86, 44–48 (2007)

    Google Scholar 

  5. G.P. Dinda, A.K. Dasgupta, J. Majumder, Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater. Sci. Eng. A 509, 98–104 (2009)

    Article  Google Scholar 

  6. A. Pinkerton, W. Wang, L. Li, Component repair using laser direct metal deposition. Proc. Inst. Mech. Eng. B 222, 827–836 (2008)

    Article  Google Scholar 

  7. G.K. Lewis, E. Schlinenger, Practical consideration and capabilities for laser assisted direct metal deposition. Mater. Des. 21, 417–423 (2000)

    Article  Google Scholar 

  8. C.P. Paul, A. Khajepour, Automated laser fabrication of cemented carbide components. Opt. Laser Technol. 40, 735–741 (2008)

    Article  Google Scholar 

  9. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, A.K. Nath, Investigating laser rapid manufacturing for Inconel-625 components. Opt. Laser Technol. 39, 800–805 (2007)

    Article  Google Scholar 

  10. L. Xue, M.U. Islam, Free-form laser consolidation for producing metallurgically sound and functional components. J. Laser Appl. 12, 160–165 (2000)

    Article  Google Scholar 

  11. Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, P.T. Wang, Microporosity effects on cyclic plasticity and fatigue of LENS-processed steel. Acta Mater. 58(4029), 4038 (2010)

    Google Scholar 

  12. A. Theriault, L. Xue, J.R. Dryden, Fatigue behavior of laser consolidated IN-625 at room and elevated temperatures. Mater. Sci. Eng. A 516, 217–225 (2009)

    Article  Google Scholar 

  13. A.K. Nath, L. Abhinandan, P. Choudhary, Operational characteristics of a pulser-sustained DC-excited transverse-flow CW CO2 laser of 5-kw output power. Opt. Eng. 33, 1889–1893 (1994)

    Article  Google Scholar 

  14. A.K. Nath, T. Reghu, C.P. Paul, M.O. Ittoop, P. Bhargava, High-power transverse flow CW CO2 laser for material processing applications. Opt. Laser Technol. 37, 329–335 (2005)

    Article  Google Scholar 

  15. P. Ganesh, R. Kaul, C.P. Paul, P. Tiwari, S.K. Rai, R.C. Prasad, L.M. Kukreja, Fatigue and fracture toughness characteristics of laser rapid manufactured inconel 625 structures. Mater. Sci. Eng. A 527, 7490–7497 (2010)

    Google Scholar 

  16. P. Ganesh, A. Moitra, P. Tiwari, S. Sathyanarayanan, H. Kumar, S.K. Rai, R. Kaul, C.P. Paul, R.C. Prasad, L.M. Kukreja, Fracture behavior of laser-clad joint of Stellite 21 on AISI 316L stainless steel. Mater. Sci. Eng. A 527, 3748–3756 (2010)

    Article  Google Scholar 

  17. ASTM Standard E647-13e1, Standard Test Method for Measurement of Fatigue Crack Growth Rates (ASTM International, West Conshohocken, PA, 2013)

  18. ASTM Standard E1820-11e1, Standard Test Method for Measurement of Fracture Toughness (ASTM International, West Conshohocken, PA, 2011)

  19. ASM Metals Handbook, Properties and selection: stainless steels, tool materials and special-purpose metals, in Metals Handbook, Vol. 3, 9th edn, ed. by D. Benjamin, C.W. Kirkpatrick (ASM International, Metals Park, 1980), pp. 113, 21

  20. P. Ganesh, R. Giri, R. Kaul, P.R. Sankar, P. Tiwari, A. Atulkar, R.K. Porwal, R.K. Dayal, L.M. Kukreja, Studies on pitting corrosion and sensitization in laser rapid manufactured specimens of type 316L stainless steel. Mater. Des. 39, 509–521 (2012)

    Article  Google Scholar 

  21. ASM Metals handbook, Fatigue and fracture, in Metals Handbook, vol. 19, 10th edn., ed. by S.R. Lampman et al. (ASM International, Materials Park, 1997), pp. 714, 725,733–734

  22. R.L. Tobler, D. Meyn, Cleavage-like fracture along slip planes in Fe–18Cr–3Ni–13Mn–0.37N austenitic stainless steel at liquid helium temperature. Metall. Trans. A 19(6), 1626–1631 (1988)

    Article  Google Scholar 

  23. Y. Tomota, Y. Xia, K. Inoue, Mechanism of low temperature brittle fracture in high nitrogen bearing austenitic steels. Acta Mater. 46(5), 1577–1587 (1998)

    Article  Google Scholar 

  24. S. Wang, K. Yang, Y. Shan, L. Li, Plastic deformation and fracture behaviors of nitrogen-alloyed austenitic stainless steels. Mater. Sci. Eng. A 490, 95–104 (2008)

    Article  Google Scholar 

  25. K. Rajanna, B. Pathiraj, B.H. Kolstrer, X-ray fractography studies on austenitic stainless steels. Eng. Fract. Mech. 54, 155–166 (1996)

    Article  Google Scholar 

  26. V. Tsakaris, D.V. Edmonds, Martensite and deformation Twinning in austenitic steels. Mater. Sci. Eng. A 273–275, 430–436 (1999)

    Article  Google Scholar 

  27. M.X. Zhang, P.M. Kelly, J.D. Gates, A model of stress induced martensitic transformation in Fe–Ni–C alloy. Mater. Sci. Eng. A 275, 251–256 (1999)

    Article  Google Scholar 

  28. W.-Y. Maeng, M.-H. Kim, Comparative study on the fatigue crack growth behavior of 316L and 316LN stainless steels: effect of microstructure of cyclic plastic strain zone at crack tip. J. Nucl. Mater. 282, 32–39 (2000)

    Article  Google Scholar 

  29. A. Milker, Y. Estrin, X.Z. Hu, Magnetic force microscopy of fatigue crack tip region in a 316L austenitic stainless steel. Scripta Mater. 47, 441–446 (2002)

    Article  Google Scholar 

  30. A. Pineau, L.F. Van swam, R.M. Pelloux, Cyclic stress–strain behavior of a stainless steel in the Ms–Md range. Scripta Metall. 7, 657–660 (1973)

    Article  Google Scholar 

  31. M. Bayerlein, H.J. Christ, H. Mughrabi, Plasticity induced martensitic transformation during cyclic deformation of AIS1 304L stainless steel. Mater. Sci. Eng. A 114, L11–L16 (1989)

    Article  Google Scholar 

  32. W. Elber, The Significance of Fatigue Crack Closure—Damage Tolerance in Aircraft Structures, Special Technical Publication STP 486 (American Society for Testing of Materials, Philadelphia, 1971), pp. 230–242

  33. S.G. Sundaraman, K.A. Padmanabhan, Influence of martensite formation and grain size on the room temperature low cycle fatigue behaviour of AISI 304 LN austenitic stainless steel. Mater. Sci. Technol. 10, 614–620 (1994)

    Article  Google Scholar 

  34. A.K. Head, The growth of fatigue cracks. Philos. Mag. 44, 925–938 (1953)

    Google Scholar 

  35. S. Riekehr, G. Cam, J.F. Dos Santos, M. Kocak, Investigation on fracture toughness of laser beam welded steels, in Proceedings of the European Conference on Laser Treatment of Materials, ed. by B.L. Mordike (Werkstoff-Informationsgesellschaft, Frankfurt, 1998), pp. 405–411

Download references

Acknowledgments

Authors thankfully acknowledge the support provided by Shri Ram Nihal Ram and Shri Anil Adbol in preparation of specimens. Authors are also grateful to the staff members of laser materials processing division of RRCAT Indore, India, for their kind support during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ganesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganesh, P., Kaul, R., Sasikala, G. et al. Fatigue Crack Propagation and Fracture Toughness of Laser Rapid Manufactured Structures of AISI 316L Stainless Steel. Metallogr. Microstruct. Anal. 3, 36–45 (2014). https://doi.org/10.1007/s13632-013-0115-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-013-0115-3

Keywords

Navigation