Skip to main content
Log in

Influence of Thermomechanical Treatment on Structure and Crack Propagation in Nanostructured Ti–50.26 at%Ni Alloy

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The fatigue propagation of processing-induced microcracks in severely deformed Ti–50.26 at%Ni alloy’s samples was investigated. The processing schedules included cold rolling (CR) with logarithmic strains of ɛ = 0.75 and 1.2, and a combination of CR(ɛ = 1), intermediate annealing (400 °C, 1 h), and warm rolling (ɛ = 0.2, T = 150 °C). The final step of the thermomechanical processing schedules consisted of post-deformation annealing at 400 °C, 1 h. The resulting microstructures were studied using transmission electron microscopy. Using optical microscopy, the processing-induced edge cracks’ lengths and concentrations were measured before and after multicycle superelastic and stress generation/relaxation testing. From the functional fatigue point of view, nanocrystalline (NC) microstructure demonstrated higher tolerance to small cracks than mixed NC + nanosubgrained structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V. Brailovski, S.D. Prokoshkin, I.Y. Khmelevskaya et al., Structure and properties of the Ti–50.0 at% Ni alloy after strain hardening and nanocrystallizing thermomechanical processing. Mater. Trans. 47(3), 795–804 (2006)

    Article  Google Scholar 

  2. N.N. Kuranova, D.V. Gunderov, A.N. Uksusnikov et al., Effect of heat treatment on the structural and phase transformations and mechanical properties of TiNi alloy subjected to severe plastic deformation by torsion. Phys. Met. Metall. 108(6), 556–568 (2009)

    Article  Google Scholar 

  3. A.V. Sergueeva, C. Song, R.Z. Valiev et al., Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing. Mater. Sci. Eng. A A339(1–2), 159–165 (2003)

    Article  Google Scholar 

  4. K. Tsuchiya, M. Ohnuma, K. Nakajima et al., Microstructures and enhanced properties of SPD-processed TiNi shape memory alloy. Mater. Devices Smart Syst. 3, 113–124 (2009)

    Google Scholar 

  5. V. Brailovski, S. Prokoshkin, K. Inaekyan et al., Functional properties of nanocrystalline, submicrocrystalline and polygonized Ti–Ni alloys processed by cold rolling and post-deformation annealing. J. Alloys Compd. 509(5), 2066–2075 (2011)

    Article  Google Scholar 

  6. V. Demers, V. Brailovski, S.D. Prokoshkin et al., Thermomechanical fatigue of nanostructured Ti–Ni shape memory alloys. Mater. Sci. Eng. A 513–514(1–7), 185–196 (2009)

    Article  Google Scholar 

  7. Y. Facchinello, V. Brailovski, S.D. Prokoshkin et al., Manufacturing of nanostructured Ti–Ni shape memory alloys by means of cold/warm rolling and annealing thermal treatment. J. Mater. Process. Technol. 212(11), 2294–2304 (2012)

    Article  Google Scholar 

  8. A. Kreitcberg, V. Brailovski, S. Prokoshkin et al., Microstructure and functional fatigue of nanostructured Ti–50.26 at%Ni alloy after thermomechanical treatment with warm rolling and intermediate annealing. Mater. Sci. Eng. A 562, 118–127 (2013)

    Article  Google Scholar 

  9. S. Miyazaki, K. Mizukoshi, T. Ueki et al., Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires. Mater. Sci. Eng. A 273, 658–663 (1999)

    Article  Google Scholar 

  10. N. Nayan, D. Roy, V. Buravalla et al., Unnotched fatigue behavior of an austenitic Ni–Ti shape memory alloy. Mater. Sci. Eng. A 497(1–2), 333–340 (2008)

    Article  Google Scholar 

  11. H.A. Padilla II, B.L. Boyce, A review of fatigue behavior in nanocrystalline metals. Proc. Soc. Exp. Mech. 67, 5–23 (2010)

    Article  Google Scholar 

  12. X.Z. Liao, Y.H. Zhao, Y.T. Zhu et al., Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J. Appl. Phys. 96(1), 636–640 (2004)

    Article  Google Scholar 

  13. X.Z. Liao, F. Zhou, E.J. Lavernia et al., Deformation mechanism in nanocrystalline Al: partial dislocation slip. Appl. Phys. Lett. 83(4), 632–634 (2003)

    Article  Google Scholar 

  14. V.H. Swygenhoven, P.M. Derlet, A.G. Froseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399–403 (2004)

    Article  Google Scholar 

  15. D. Wolf, V. Yamakov, S.R. Phillpot et al., Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? Acta Mater. 53(1), 1–40 (2005)

    Article  Google Scholar 

  16. K.S. Kumar, S. Suresh, M.F. Chisholm et al., Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387–405 (2003)

    Article  Google Scholar 

  17. X.Z. Liao, A.R. Kilmametov, R.Z. Valiev et al., High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl. Phys. Lett. 88(2), 1–21909 (2006)

    Article  Google Scholar 

  18. Z. Shan, E.A. Stach, J.M.K. Wiezorek et al., Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305(5684), 654–657 (2004)

    Article  Google Scholar 

  19. T. Hanlon, E.D. Tabachnikova, S. Suresh, Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27(10–12), 1147–1158 (2005)

    Article  Google Scholar 

  20. T. Hanlon, Y.N. Kwon, S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals. Scripta Mater. 49(7), 675–680 (2003)

    Article  Google Scholar 

  21. J.R. Rice, R. Thomson, Ductile versus brittle behaviour of crystals. Philos. Mag. 29(1), 73–97 (1974)

    Article  Google Scholar 

  22. I.A. Ovid’ko, A.G. Sheinerman, Grain size effect on crack blunting in nanocrystalline materials. Scripta Mater. 60(8), 627–630 (2009)

    Article  Google Scholar 

  23. P. Cavaliere, Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31(10), 1476–1489 (2009)

    Article  Google Scholar 

  24. M.D. Sangid, G.J. Pataky, H. Sehitoglu et al., Superior fatigue crack growth resistance, irreversibility, and fatigue crack growth–microstructure relationship of nanocrystalline alloys. Acta Mater. 59(19), 7340–7355 (2011)

    Article  Google Scholar 

  25. R.L. Holtz, K. Sadananda, M.A. Imam, Fatigue thresholds of Ni–Ti alloy near the shape memory transition temperature. Int. J. Fatigue 21, S137–S145 (1999)

    Article  Google Scholar 

  26. K.N. Melton, O. Mercier, Fatigue of NiTi thermoelastic martensites. Acta Metall. 27(1), 137–144 (1979)

    Article  Google Scholar 

  27. J.F. Luo, S.C. Mao, X.D. Han et al., Crystallographic mechanisms of fracture in a textured polycrystalline TiNi shape memory alloy. J. Appl. Phys. 102(4), 1–043526 (2007)

    Article  Google Scholar 

  28. Y.S. Umanskiy, Y.A. Skakov, A.N. Ivanov et al., Crystallography, X-ray Diffraction and Electron Microscopy (Metallurgy, Moscow, 1983)

    Google Scholar 

  29. S.D. Prokoshkin, V. Brailovski, A.V. Korotitskiy et al., Specific features of the formation of the microstructure of titanium nickelide upon thermomechanical treatment including cold plastic deformation to degrees from moderate to severe. Phys. Met. Metall. 110(3), 289–303 (2010)

    Article  Google Scholar 

  30. S.D. Prokoshkin, I.Y. Khmelevskaya, S.V. Dobatkin et al., Alloy composition, deformation temperature, pressure and post-deformation annealing effects in severely deformed Ti–Ni based shape memory alloys. Acta Mater. 53(9), 2703–2714 (2005)

    Article  Google Scholar 

  31. R.L. Carlson, D.L. Steadman, D.S. Dancila et al., Fatigue growth of small corner cracks in aluminum 6061-T651. Int. J. Fatigue 19(1), 119–125 (1997)

    Article  Google Scholar 

  32. M.F. Horstemeyer, D. Farkas, S. Kim et al., Nanostructurally small cracks (NSC): a review on atomistic modeling of fatigue. Int. J. Fatigue 32(9), 1473–1502 (2010)

    Article  Google Scholar 

  33. K. Tokaji, T. Ogawa, K. Ohya, The effect of grain size on small fatigue crack growth in pure titanium. Int. J. Fatigue 16(8), 571–578 (1994)

    Article  Google Scholar 

  34. K.S. Ravichandran, L. Xu-Dong, Fracture mechanical character of small cracks in polycrystalline materials: concept and numerical K calculations. Acta Mater. 48(2), 525–540 (2000)

    Article  Google Scholar 

  35. B.N. Leis, A.T. Hopper, J. Ahmad et al., Critical review of the fatigue growth of short cracks. Eng. Fract. Mech. 23(5), 883–898 (1986)

    Article  Google Scholar 

  36. S. Pearson, Initiation of fatigue cracks in commercial aluminuim alloys and the subsequent propagation of very short cracks. Eng. Fract. Mech. 7(2), 235–247 (1975)

    Article  Google Scholar 

  37. K.S. Ravichandran, J.M. Larsen, Effects of crack aspect ratio on the behavior of small surface cracks in fatigue. II. Experiments on a titanium (Ti–8Al) alloy. Metall. Mater. Trans. A 28A(1), 157–169 (1997)

    Article  Google Scholar 

  38. S. Suresh, R.O. Ritchie, Propagation of short fatigue cracks. Int. Met. Rev. 29(6), 445–476 (1984)

    Google Scholar 

  39. K.S. Ravichandran, Effects of crack aspect ratio on the behavior of small surface cracks in fatigue. I. Simulation. Metall. Mater. Trans. A 28A(1), 149–156 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada and to the Ministry of Education and Science of the Russian Federation for their financial support of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Brailovski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreitcberg, A., Brailovski, V., Prokoshkin, S. et al. Influence of Thermomechanical Treatment on Structure and Crack Propagation in Nanostructured Ti–50.26 at%Ni Alloy. Metallogr. Microstruct. Anal. 3, 46–57 (2014). https://doi.org/10.1007/s13632-013-0114-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-013-0114-4

Keywords

Navigation