Advertisement

1,5-anidroglucitolo: un marcatore non tradizionale di iperglicemia

  • Gabriella Lavalle
  • Roberto Testa
  • Maria Elisabetta Onori
  • Raffaella Vero
  • Anna VeroEmail author
Rassegna
  • 109 Downloads

Riassunto

Uno stretto controllo della glicemia rappresenta nel paziente diabetico un elemento cruciale per la prevenzione delle complicanze cardiovascolari. È dimostrato che le complicanze microvascolari e macrovascolari non sono correlate solo all’iperglicemia a digiuno e a quella di lungo termine, ma anche alle oscillazioni glicemiche, quali i picchi iperglicemici postprandiali. L’emoglobina glicata (HbA1C), esame gold standard nel monitoraggio glicemico, rappresentando un marcatore dell’iperglicemia dei 2–3 mesi precedenti l’esame, non fornisce indicazioni sulla glicemia di breve termine e sulle oscillazioni glicemiche. Inoltre, considerando l’elevata variabilità preanalitica di questo esame, da alcuni anni vengono studiati possibili marcatori alternativi o da affiancare all’HbA1C nel monitoraggio della glicemia: tra questi l’1,5-anidroglucitolo, in grado di fornire, con un solo esame, una specifica misura dell’iperglicemia nelle 2 settimane precedenti il prelievo.

Parole chiave

1,5-anidroglucitolo (1,5-AG) HbA1C Diabete Iperglicemia Iperglicemia postprandiale Oscillazioni glicemiche 

1,5-anhydroglucitol: an unconventional marker of hyperglycemia

Summary

A strict glycemic control in diabetic patients is essential to reduce the incidence of cardiovascular complications. It has been shown that microvascular and macrovascular complications are not only related to long-term or fasting hyperglycemia, but also to glucose fluctuations, such as postprandial hyperglycemia peaks. Glycated hemoglobin (HbA1C), used as a gold standard indicator for glycemic control, reflects the average plasma glucose concentration over the last 2–3 months, but it does not provide information about the short-term glycemic control and the glucose fluctuations. Moreover, numerous studies have revealed that HbA1C test has many pre-analytical limitations and other parameters are receiving a growing interest as an alternative or in addition to HbA1C test: among these, 1,5-anhydroglucitol represents a specific marker to evaluate short-term status for 1–2 previous weeks.

Keywords

1,5-anhydroglucitol (1,5-AG) HbA1C Diabetes Hyperglycemia Postprandial hyperglycemia Glycemic excursions 

Notes

Conflitti di interessi

Nessuno.

Studi condotti su esseri umani e animali

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori. L’articolo non prevede consenso informato.

Bibliografia

  1. 1.
    DECODE Study Group, the European Diabetes Epidemiology Group (2001) Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 161:397–405 CrossRefGoogle Scholar
  2. 2.
    Hanefeld M, Koehler C, Henkel E et al. (2000) Post-challenge hyperglycaemia relates more strongly than fasting hyperglycaemia with carotid intima-media thickness: the RIAD study. Risk factors in impaired glucose tolerance for atherosclerosis and diabetes. Diabet Med 17:835–840 CrossRefPubMedGoogle Scholar
  3. 3.
    Temelkova-Kurktschiev TS, Koehler C, Henkel E et al. (2000) Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1C level. Diabetes Care 23:1830–1834 CrossRefPubMedGoogle Scholar
  4. 4.
    NGSP (2016) Factors that interfere with HbA1c test results. http://www.ngsp.org/factors.asp (Accesso 11 settembre 2017)
  5. 5.
    McCall AL, Cox DJ, Crean J et al. (2006) A novel analytical method for assessing glucose variability: using CGMS in type 1 diabetes mellitus. Diabetes Technol Ther 8:644–653 CrossRefPubMedGoogle Scholar
  6. 6.
    Dungan KM (2008) 1,5-anhydroglucitol (GlycoMark) as a marker of short-term glycemic control and glycemic excursions. Expert Rev Mol Diagn 8:9–19 CrossRefPubMedGoogle Scholar
  7. 7.
    Koga M (2014) Glycated albumin; clinical usefulness. Clin Chim Acta 433:96–104 CrossRefPubMedGoogle Scholar
  8. 8.
    Yamanouchi T, Akanuma Y (1994) Serum 1,5-anhydroglucitol (1,5 AG): new clinical marker for glycemic control. Diabetes Res Clin Pract 24(Suppl): S261–S268 CrossRefPubMedGoogle Scholar
  9. 9.
    Yamanouchi T, Tachibana Y, Akanuma H et al. (1992) Origin and disposal of 1,5-anhydroglucitol, a major polyol in the human body. Am J Physiol 263:E268–E273 PubMedGoogle Scholar
  10. 10.
    Servo C, Pitkänen E (1975) Variation in polyol levels in cerebrospinal fluid and serum in diabetic patients. Diabetologia 11:575–580 CrossRefPubMedGoogle Scholar
  11. 11.
    Mook-Kanamori DO, Selim MM, Takiddin AH et al. (2014) 1,5-Anhydroglucitol in saliva is a noninvasive marker of short-term glycemic control. J Clin Endocrinol Metab 99:E479–E483 CrossRefPubMedGoogle Scholar
  12. 12.
    Kim WJ, Park CY (2013) 1,5-anhydroglucitol in diabetes mellitus. Endocrine 43:33–40 CrossRefPubMedGoogle Scholar
  13. 13.
    Homa K, Majkowska L (2010) Difficulties in interpreting HbA(1c) results. Pol Arch Med Wewn 120:148–154 PubMedGoogle Scholar
  14. 14.
    Stickle D, Turk J (1997) A kinetic mass balance model for 1,5-anhydroglucitol: applications to monitoring of glycemic control. Am J Physiol 273:E821–E830 PubMedGoogle Scholar
  15. 15.
    Yamanouchi T, Akaoka I, Akanuma Y (1989) New diagnostic tests for diabetes mellitus. 1.5-Anhydroglucitol. Nihon Rinsho 47:2472–2476 PubMedGoogle Scholar
  16. 16.
    Akanuma H, Ogawa K, Lee Y et al. (1981) Reduced levels of plasma 1,5-anhydroglucitol in diabetic patients. J Biochem 90:157–162 CrossRefPubMedGoogle Scholar
  17. 17.
    Dungan KM, Buse JB, Largay J et al. (2006) 1,5-anhydroglucitol and postprandial hyperglycemia as measured by continuous glucose monitoring system in moderately controlled patients with diabetes. Diabetes Care 29:1214–1219 CrossRefPubMedGoogle Scholar
  18. 18.
    Seok H, Huh JH, Kim HM et al. (2015) 1,5-anhydroglucitol as a useful marker for assessing short-term glycemic excursions in type 1 diabetes. Diabetes Metab J 39:164–170 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Watanabe M, Kokubo Y, Higashiyama A et al. (2011) Serum 1,5-anhydro-D-glucitol levels predict first-ever cardiovascular disease: an 11-year population-based cohort study in Japan, the Suita study. Atherosclerosis 16:477–483 CrossRefGoogle Scholar
  20. 20.
    Ikeda N, Hara H, Hiroi Y (2015) Ability of 1,5-anhydro-d-glucitol values to predict coronary artery disease in a non-diabetic population. Int Heart J 56:587–591 CrossRefPubMedGoogle Scholar
  21. 21.
    Liang M, McEvoy JW, Chen Y et al. (2016) Association of a biomarker of glucose peaks, 1,5-anhydroglucitol, with subclinical cardiovascular disease. Diabetes Care 39:1752–1759 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ma X, Hu X, Zhou J et al. (2015) Glycated albumin is more closely correlated with coronary artery disease than 1,5-anhydroglucitol and glycated hemoglobin A1C. Cardiovasc Diabetol 14:16 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Selvin E, Rawlings AM, Grams M et al. (2014) Association of 1,5-anhydroglucitol with diabetes and microvascular conditions. Clin Chem 60:1409–1418 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yamanouchi T, Inoue T, Ogata E (2001) Post-load glucose measurements in oral glucose tolerance tests correlate well with 1,5-anhydroglucitol, an indicator of overall glycaemic state, in subjects with impaired glucose tolerance. Clin Sci (Lond) 101:227–233 CrossRefGoogle Scholar
  25. 25.
    Pal A, Farmer AJ, Dudley C et al. (2010) Evaluation of serum 1,5 anhydroglucitol levels as a clinical test to differentiate subtypes of diabetes. Diabetes Care 33:252–257 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nowak N, Skupien J, Cyganek K et al. (2013) 1,5-anhydroglucitol as a marker of maternal glycaemic control and predictor of neonatal birthweight in pregnancies complicated by type 1 diabetes mellitus. Diabetologia 56:709–713 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wright LA, Hirsch IB, Gooley TA et al. (2015) 1,5-anhydroglucitol and neonatal complications in pregnancy complicated by diabetes. Endocr Pract 21:725–733 CrossRefPubMedGoogle Scholar
  28. 28.
    Adamson TL, Cook CB, La Belle JT (2014) Detection of 1,5-anhydroglucitol by electrochemical impedance spectroscopy. J Diabetes Sci Technol 8:350–355 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li S, Heng X, Sheng H et al. (2008) Determination of glycemic monitoring marker 1,5-anhydroglucitol in plasma by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 875:459–464 CrossRefPubMedGoogle Scholar
  30. 30.
    Speeckaert M, Van Biesen W, Delanghe J et al. (2014) Are there better alternatives than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population? Nephrol Dial Transplant 29:2167–2177 CrossRefPubMedGoogle Scholar
  31. 31.
    Herman WH, Dungan KM, Wolffenbuttel BH et al. (2009) Racial and ethnic differences in mean plasma glucose, hemoglobin A1C, and 1,5-anhydroglucitol in over 2000 patients with type 2 diabetes. J Clin Endocrinol Metab 94:1689–1694 CrossRefPubMedGoogle Scholar
  32. 32.
    Balis DA, Tong C, Meininger G (2014) Effect of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, on measurement of serum 1,5-anhydroglucitol. J Diabetes 6:378–380 CrossRefPubMedGoogle Scholar
  33. 33.
    Kato C, Morishita Y, Fukatsu T et al. (1996) False-positive increase in 1,5-anhydro-D-glucitol due to Kampo (Japanese herbal) medicine. Rinsho Byori 44:396–399 PubMedGoogle Scholar
  34. 34.
    Wei GS, Coady SA, Reis JP et al. (2015) Duration and degree of weight gain and incident diabetes in younger versus middle-aged black and white adults: ARIC, CARDIA, and the Framingham Heart Study. Diabetes Care 38:2042–2049 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ouchi M, Oba K, Yamashita H et al. (2012) Effects of sex and age on serum 1,5-anhydroglucitol in nondiabetic subjects. Exp Clin Endocrinol Diabetes 120:288–295 CrossRefPubMedGoogle Scholar
  36. 36.
    Chaleckis R, Murakami I, Takada J et al. (2016) Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci USA 113:4252–4259 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhou Q, Shi DB, Lv LY (2016) The establishment of biological reference intervals of nontraditional glycemic markers in a Chinese population. J Clin Lab Anal. doi: 10.1002/jcla22097

Copyright information

© Società Italiana di Patologia Clinica e Medicina di Laboratorio, pubblicazione corretta (Novembre 2017) 2017

Authors and Affiliations

  1. 1.Laboratorio Analisi–Ospedale di BraccianoRomaItalia
  2. 2.Modelli di Integrazione Multidisciplinare in Patologia ClinicaINRCA-IRCCSAnconaItalia
  3. 3.Laboratorio di genetica forenseUniversità degli studi di Roma “Tor Vergata”RomaItalia
  4. 4.Unità Operativa Endocrinologia e Diabete–Azienda Ospedaliera Pugliese CiaccioCatanzaroItalia
  5. 5.Laboratorio di Analisi Chimico-Clinica–Azienda Ospedaliera Pugliese CiaccioCatanzaroItalia

Personalised recommendations