Skip to main content
Log in

Linee guida SIPMeL per la ricerca dei polimorfismi nella diagnostica di screening della trombofilia

Italian Society of Clinical Pathology and Laboratory Medicine (SIPMeL) Guidelines for laboratory screening DNA testing for thrombophilia

  • Raccomandazioni e Linee Guida
  • Published:
La Rivista Italiana della Medicina di Laboratorio - Italian Journal of Laboratory Medicine

Riassunto

Con il termine trombofilia si identifica una condizione clinica che determina un aumento del rischio di malattia tromboembolica venosa e di alcune patologie della gravidanza. Questa condizione può essere associata ad alterazioni ematologiche, sia congenite sia acquisite, che possono essere studiate con dosaggi quantitativi o con tecniche genetiche di biologia molecolare. L’utilità di eseguire indagini di laboratorio per identificare una condizione ereditaria di trombofilia è a tutt’oggi argomento di discussione. Da parte di diverse Società scientifiche e Gruppi di Lavoro sono state prodotte Linee guida nelle quali si sostiene che gli unici esami validati per uno studio di screening di primo livello per la trombofilia ereditaria sono: il dosaggio di antitrombina, proteina C e proteina S e la ricerca delle mutazioni per fattore V di Leiden e protrombina G20210A. Ciò nonostante, a livello di indagini di screening, viene spesso richiesto o proposto lo studio di molti altri polimorfismi con incerta utilità clinica, notevole aumento dei costi e produzione di ansie e timori ingiustificati nella popolazione esaminata. Il Gruppo di Studio di Coagulazione della SIPMeL ha voluto eseguire una ricognizione della letteratura medica per aggiornare la precedente edizione di Linee guida SIMeL sullo screening della trombofilia (2004) e in particolare per ampliare le raccomandazioni in merito alla ricerca dei polimorfismi nello studio della diagnostica della trombofilia ereditaria.

Summary

The term thrombophilia refers to an abnormality of blood coagulation leading to an increased risk of venous thromboembolism and obstetric complications. It may be associated with inherited or acquired risk factors that can be measured in plasma or DNA testing. The utility of laboratory investigation for inherited thrombophilia has been largely debated. Several Guidelines from Scientific Societies and Working Groups are produced in which only deficencies of antithrombin, protein C, protein S and mutations of Factor V Leiden and prothrombin G20210A are established as validated biomarkers at the first-level laboratory screening test for inherited thrombophilia. Nevertheless many others polymorphisms are often proposed as markers to be investigated in a screening set with doubtful clinical benefits, increase of related costs and production of anxiety and fear in the examined people. The Study Group on Coagulation of the Italian Society of Clinical Pathology and Laboratory Medicine (SIPMeL) reviewed the medical literature to update the previous edition of SIMeL (Italian Society of Laboratory Medicine) Guidelines for the screening of thrombophilia (2004) and to expand the recommendations about the investigation of the related polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliografia

  1. Nicolaides AN, Breddin HK, Carpenter P et al. (2005) Thrombophilia and venous thromboembolism. International consensus statement. Guidelines according to scientific evidence. Int Angiol 24:1–26

    Article  CAS  PubMed  Google Scholar 

  2. Pernod G, Biron-Andreani C, Morange PE et al. (2009) Recommendations on testing for thrombophilia in venous thromboembolic disease: a French consensus guideline. J Mal Vasc 34:156–203

    Article  CAS  PubMed  Google Scholar 

  3. Baglin T, Gray E, Greaves M et al. (2010) Clinical guidelines for testing for heritable thrombophilia. Br J Haematol 149:209–220

    Article  PubMed  Google Scholar 

  4. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group (2011) Recommendations from the EGAPP Working Group: routine testing for Factor Leiden (R506Q) and Prothrombin (G20210A) mutations in adults with a history of idiopathic venous thromboembolism and their adults family members. Genet Med 13:67–76

    Google Scholar 

  5. Kearon C, Kahn SR, Agnelli G et al. (2008) Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133:454S–545S

    Article  CAS  PubMed  Google Scholar 

  6. NICE (2015) Venous thromboembolic disease: the management of venous thromboembolic disease and the role of thrombophilia testing. Clinical guideline 144, London: National Institute for Health and Clinical Excellence, published June 2012, updated November 2015

  7. Testa S, Antonucci G, Intra E et al. (2004) Gli screening per Trombofilia. Riv Med Lab–JLM 5:118–120

    Google Scholar 

  8. Lussana F, Dentali F, Abbate R et al. (2009) Screening for thrombophilia and antithrombotic prophylaxis in pregnancy: Guidelines of the Italian Society for Haemostasis and Thrombosis (SISET). Thromb Res 124:e19–e25

    Article  CAS  PubMed  Google Scholar 

  9. Istituto Superiore di Sanità. Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della salute (2008) Consensus Conference, Roma 18–19 Settembre 2008: Prevenzione delle complicanze trombotiche associate all’uso di estroprogestinici in età riproduttiva. Sistema Nazionale per le Linee guida (SNLG) Luglio 2009

  10. De Stefano V, Rossi E (2013) Testing for inherited thrombophilia and consequences for antithrombotic prophylaxis in patients with venous thromboembolism and their relatives. A review of the Guidelines from Scientific Societies an Working Groups. Thromb Haemost 110:697–705

    Article  PubMed  Google Scholar 

  11. De Stefano V, Rossi E (2016) Thrombophilia and risk of recurrent venous thromboembolism. XXIV National Congress of the Italian Society for Thrombosis and Hemostasis (SISET). Blood Transfus 14(Suppl 5):S663–S667

    Google Scholar 

  12. Eldibany MM, Caprini JA (2007) Hyperhomocysteinemia and thrombosis: an overview. Arch Pathol Lab Med 131:872–884

    CAS  PubMed  Google Scholar 

  13. Bezemer ID, Doggen CJ, Vos HL et al. (2007) No association between the common MTHFR 677C->T polymorphism and venous thrombosis: results from the MEGA study. Arch Intern Med 167:497–501

    Article  CAS  PubMed  Google Scholar 

  14. Bernardi F, Legnani C, Micheletti F et al. (1996) A heparin cofactor II mutation (HCII Rimini) combined with factor V Leiden or type I protein C deficiency in two unrelated thrombophilic subjects. Thromb Haemost 76:505–509

    CAS  PubMed  Google Scholar 

  15. Rau JC, Mitchell JW, Fortenberry YM et al. (2011) Heparin cofactor II: discovery, properties, and role in controlling vascular homeostasis. Semin Thromb Hemost 37:339–348

    Article  CAS  PubMed  Google Scholar 

  16. Boyle AJ, Roddick LA, Bhakta V et al. (2013) The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand. BMC Biochem 14:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schuster V, Hügle B, Tefs K (2007) Plasminogen deficiency. J Thromb Haemost 5:2315–2322

    Article  CAS  PubMed  Google Scholar 

  18. Mehta R, Shapiro AD (2008) Plasminogen deficiency. Haemophilia 14:1261–1268

    Article  CAS  PubMed  Google Scholar 

  19. Seguí R, Estellés A, Mira Y et al. (2000) PAI-1 promoter 4G/5G genotype as an additional risk factor for venous thrombosis in subjects with genetic thrombophilic defects. Br J Haematol 111:122–128

    Article  PubMed  Google Scholar 

  20. Martinez J (1997) Congenital dysfibrinogenemia. Curr Opin Hematol 4:357–365

    Article  CAS  PubMed  Google Scholar 

  21. van Tilburg NH, Rosendaal FR, Bertina RM (2000) Thrombin activable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 95:2855–2859

    PubMed  Google Scholar 

  22. Bagoly Z, Koncz Z, Hársfalvi J et al. (2012) Factor XIII, clot structure, thrombosis. Thromb Res 129:382–387

    Article  CAS  PubMed  Google Scholar 

  23. Danik JS, Buring JE, Chasman DI et al. (2013) Liporpotein(a), polymorphisms in the LPA gene, and incident venous thromboembolism among 21483 women. J Thromb Haemost 11:205–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. González-Conejero R, Lozano ML, Corral J et al. (2000) The TFPI 536C → T mutation is not associated with increased risk for venous or arterial thrombosis. Thromb Haemost 83:787–788

    PubMed  Google Scholar 

  25. Ohlin AK, Norlund L, Marlar RA (1997) Thrombomodulin gene variations and thromboembolic disease. Thromb Haemost 78:396–400

    CAS  PubMed  Google Scholar 

  26. Navarro S, Medina P, Bonet E et al. (2013) Association of thrombomodulin gene c. 1418C>T polymorphism with thrombomodulin levels and with venous thrombosis risk. Arterioscler Thromb Vasc Biol 33:1435–1440

    Article  CAS  PubMed  Google Scholar 

  27. Medina P, Navarro S, Estellés A et al. (2007) Polymorphisms in the endothelial protein C receptor gene and thrombophilia. Thromb Haemost 98:564–569

    CAS  PubMed  Google Scholar 

  28. Medina P, Navarro S, Bonet E et al. (2014) Functional analysis of two haplotypes of the human endothelial protein C receptor gene. Arterioscler Thromb Vasc Biol 34:684–690

    Article  CAS  PubMed  Google Scholar 

  29. Hsiao FC, Hsu LA (2011) Meta-analysis of association between insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and venous thromboembolism. Clin Appl Thromb Hemost 17:51–57

    Article  CAS  PubMed  Google Scholar 

  30. Bafunno V, Santacroce R, Margaglione M (2011) The risk of occurence of venous thrombosis: focus on protein Z. Thromb Res 128:508–515

    Article  CAS  PubMed  Google Scholar 

  31. Razzari C, Martinelli I, Bucciarelli P et al. (2006) Polymorphisms of the protein Z-dependent protease inhibitor (ZPI) gene and the risk of venous thromboembolism. Thromb Haemost 95:909–910

    CAS  PubMed  Google Scholar 

  32. Bittar LF, de Paula EV, Mello TB et al. (2011) Polymorphisms and mutation in vVW and ADAMTS13 genes and their correlation with plasma levels of FVIII and vVW in patients with deep venous thrombosis. Clin Appl Thromb Hemost 17:514–518

    Article  CAS  PubMed  Google Scholar 

  33. Lotta LA, Tuana G, Yu J et al. (2013) Next-generation sequencing study finds an excess of rare, coding single-nucleotide variants of ADAMS13 in patients with deep vein thrombosis. J Thromb Haemost 11:1228–1239

    Article  CAS  PubMed  Google Scholar 

  34. Bray PF (2000) Platelet glycoprotein plymorphisms as risk factor for thrombosis. Curr Opin Hematol 7:284–289

    Article  CAS  PubMed  Google Scholar 

  35. Saidi S, Mahjoub T, Slamia LB et al. (2008) Polymorphisms of the human platelet alloantigens HPA-1, HPA-2, HPA-3, and HPA-4 in ischemic stroke. Am J Hematol 83:570–573

    Article  CAS  PubMed  Google Scholar 

  36. Franchini M, Martinelli I, Mannucci PM (2016) Uncertain thrombophila markers. Thromb Haemost 115:25–30

    Article  PubMed  Google Scholar 

  37. Bernardi F, Faioni EM, Castoldi E et al. (1997) A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood 90:1552–1557

    CAS  PubMed  Google Scholar 

  38. Segers O, Simioni P, Tormene D et al. (2012) Genetic modulation of the FV(Leiden)/normal FV ratio and risk of venous thrombosis in factor V Leiden heterozygotes. J Thromb Haemost 10:73–80

    Article  CAS  PubMed  Google Scholar 

  39. Castoldi E, Brugge JM, Nicoolaes GA et al. (2004) Impaired APC cofactor activity of factor V plays a major role in the APC resistance associated with the factor V Leiden (R506Q) and R2 (H1299R) mutations. Blood 103:4173–4179

    Article  CAS  PubMed  Google Scholar 

  40. Alhenc-Gelas M, Nicaud V, Gandrille S et al. (1999) The factor V gene A4070G mutation and the risk of venous thrombosis. Thromb Haemost 81:193–197

    CAS  PubMed  Google Scholar 

  41. Margaglione M, Bossone A, Coalizzo D et al. (2002) FV HR2 haplotype as additional inherited risk factor for deep vein thrombosis in individuals with a high-risk profile. Thromb Haemost 87:32–36

    CAS  PubMed  Google Scholar 

  42. Luddington R, Jackson A, Pannerselvam S et al. (2000) The factor V R2 allele: risk of venous thromboembolism, factor V levels and resistance to activated protein C. Thromb Haemost 83:204–208

    CAS  PubMed  Google Scholar 

  43. Benson JM, Ellingsen D, El-Jamil M et al. (2001) Factor V Leiden and factor V R2 allele: high-throughput analysis and association with venous thromboembolism. Thromb Haemost 86:1188–1192

    CAS  PubMed  Google Scholar 

  44. Faioni EM, Franchi F, Bucciarelli P et al. (1999) Coinheritance of the HR2 haplotype in the factor V gene confers an increased risk of venous thromboembolism to carriers of factor V R506Q (factor V Leiden). Blood 94:3062–3066

    CAS  PubMed  Google Scholar 

  45. Folsom AR, Cushman M, Tsai MY et al. (2002) A prospective study of venous thromboembolism in relation to factor V Leiden and related factors. Blood 99:2720–2725

    Article  CAS  PubMed  Google Scholar 

  46. Tormene D, Fortuna S, Tognin G et al. (2005) The incidence of venous thromboembolism in carriers of antithrombin, protein C or protein S deficiency associated with the HR2 haplotype of factor V: a family cohort study. J Thromb Haemost 3:1414–1420

    Article  CAS  PubMed  Google Scholar 

  47. Aleksova A, Di Nucci M, Gobbo M et al. (2015) Factor-V HR2 haplotype and thromboembolic disease. Acta Cardiol 70:707–711

    Article  PubMed  Google Scholar 

  48. Simsek E, Yesilyurt A, Pinarli F et al. (2014) Combined genetic mutations have remarkable effect on deep venous thrombosis and/or pulmonary embolism occurence. Gene 536:171–176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bertini.

Ethics declarations

Conflitti di interesse

Nessuno.

Studi condotti su esseri umani o animali

L’articolo non contiene alcuno studio eseguito su esseri umani e su animali da parte degli autori.

Consenso informato

Non applicabile.

Additional information

Per il Gruppo di Studio in Coagulazione della Società Italiana di Patologia Clinica e di Medicina di Laboratorio (GdS-COAG SIPMeL).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertini, M., Agostini, P., Bondanini, F. et al. Linee guida SIPMeL per la ricerca dei polimorfismi nella diagnostica di screening della trombofilia. Riv Ital Med Lab 13, 89–95 (2017). https://doi.org/10.1007/s13631-017-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13631-017-0148-8

Parole chiave

Keywords

Navigation