Skip to main content

Advertisement

Log in

Implementing in vitro and in silico approaches to evaluate anti-influenza virus activity of different Bangladeshi plant extracts

  • Original Article
  • Published:
Advances in Traditional Medicine Aims and scope Submit manuscript

Abstract

Emergence of antiviral drug resistance in influenza virus remains a major public health concern worldwide. Nowadays, different herbs receive renewed attention because of their enormous antiviral potential. In this study, we investigated the antiviral activity of Camellia sinensis, Persicaria hydropiper, Persicaria orientale, Persicaria lapathifolia, Persicaria stagnina, Mucuna pruriens and Chenopodium album against different influenza strains using both in vitro and in silico approaches. Antiviral effect of plant extracts was evaluated by cytopathic effect (CPE) inhibition assay on influenza infected MDCK (Madin Darby Canine Kidney) cell line. Later, the herb demonstrating antiviral activity was virtually screened for their available bioactive compounds and multiple in silico tools were performed to prioritize and establish these compounds as potential inhibitor. The methanol, but not the n-hexane and ethyl acetate extracts of C. sinensis, P. hydropiper, M. pruriens and C. album exhibited anti-influenza effect with EC50 values within 32–46 µg/ml. Importantly, the extracts remained effective against both amantadine-resistant and -sensitive influenza isolates. The molecular docking analysis showed that flavonoids, steroid and derivatives had strong binding affinity to the target proteins which may remain responsible for the anti-influenza characteristics of plant extracts. Pharmacokinetic properties, bioavailability and drug-likeness score revealed that ferulic acid, sinapic acid, campesterol, cryptomeridiol, eupatin and genistein could be attractive leads as potential influenza inhibitors. Taken together, the botanical ingredients of these herbs could be used as valuable candidates for developing novel therapeutics to control influenza related illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adebowale YA, Adeyemi A, Oshodi AA (2005) Variability in the physicochemical, nutritional and antinutritional attributes of six Mucuna species. Food Chem 89:37–48

    Article  CAS  Google Scholar 

  • Ahmed M, Aleem MA, Roguski K, Abedin J, Islam A, Alam KF, Gurley ES, Rahman M, Azziz-Baumgartner E, Homaira N (2018) Estimates of seasonal influenza-associated mortality in Bangladesh, 2010–2012. Influenza Other Respir Viruses 12:65–71

    Article  PubMed  Google Scholar 

  • Amić D, Davidović-Amić D, Bešlo D, Trinajstić N (2003) Structure-radical scavenging activity relationships of flavonoids. Croat Chem Acta 76:55–61

    Google Scholar 

  • Azziz-Baumgartner E, Alamgir ASM, Rahman M, Homaira N, Sohel BM, Sharker MA, Zaman RU, Dee J, Gurley ES, Al MA (2012) Incidence of influenza-like illness and severe acute respiratory infection during three influenza seasons in Bangladesh, 2008–2010. Bull World Health Organ 90:12–19

    Article  PubMed  Google Scholar 

  • Barr IG, Deng YM, Iannello P, Hurt AC, Komadina N (2008) Adamantane resistance in influenza A (H1) viruses increased in 2007 in South East Asia but decreased in Australia and some other countries. Antivir Res 80:200–205

    Article  CAS  PubMed  Google Scholar 

  • Benet LZ, Hosey CM, Ursu O, Oprea TI (2016) BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev 101:89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betakova T (2007) M2 protein-a proton channel of influenza A virus. Cur Pharm Des 13:3231–3235

    Article  CAS  Google Scholar 

  • Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boff L, Schreiber A, da Rocha MA, Del Sarto J, Brunotte L, Munkert J, Melo Ottoni F, Silva Ramos G, Kreis W, Castro Braga F (2020) Semisynthetic cardenolides acting as antiviral inhibitors of influenza A virus replication by preventing Polymerase complex formation. Molecules 25:4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bright RA, Medina M, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, Povinelli L, Cox NJ, Klimov AI (2005) Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 366:1175–1181

    Article  CAS  PubMed  Google Scholar 

  • Carrat F, Flahault A (2007) Influenza vaccine: the challenge of antigenic drift. Vaccine 25:6852–6862

    Article  CAS  PubMed  Google Scholar 

  • Chan MCW, Wang MH, Chen Z, Hui DSC, Kwok AK, Yeung ACM, Liu KM, Yeoh YK, Lee N, Chan PKS (2018) Frequent genetic mismatch between vaccine strains and circulating seasonal influenza viruses, Hong Kong, China, 1996–2012. Emerg Infect Dis 24:1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Qiu H, Gong J, Liu Q, Xiao H, Chen X-W, Sun B-L, Yang R-G (2012) (−)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus. Arch Virol 157:1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Cheng PKC, Leung TWC, Ho ECM, Leung PCK, Ng AYY, Lai MYY, Lim WWL (2009) Oseltamivir-and amantadine-resistant influenza viruses A (H1N1). Emerg Infect Dis 15:966

    Article  PubMed  PubMed Central  Google Scholar 

  • da Costa Cordeiro BMP, de Lima Santos ND, Ferreira MRA, de Araújo LCC, Junior ARC, da Conceição Santos AD, de Oliveira AP, da Silva AG, da Silva Falcão EP, dos Santos Correia MT (2018) Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. BMC Complem Altern Med 18:1–10

    Article  Google Scholar 

  • Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13

    Article  Google Scholar 

  • Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Springer, Berlin, pp 243–250

    Google Scholar 

  • Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng P-Y, Bandaranayake D, Breiman RF, Brooks WA, Buchy P (2012) Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis 12:687–695

    Article  PubMed  Google Scholar 

  • Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI (2007) Surveillance of resistance to adamantanes among influenza A (H3N2) and A (H1N1) viruses isolated worldwide. J Infect Dis 196:249–257

    Article  CAS  PubMed  Google Scholar 

  • Dutt S, Narwal S, Kapoor HC, Lodha ML (2003) Isolation and characterization of two protein isoforms with antiviral activity from Chenopodium album L leaves. J Plant Biochem Biotechnol 12:117–122

    Article  CAS  Google Scholar 

  • Enkhtaivan G, John KMM, Ayyanar M, Sekar T, Jin K-J, Kim DH (2015) Anti-influenza (H1N1) potential of leaf and stem bark extracts of selected medicinal plants of South India. Saudi J Biol Sci 22:532–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan D, Zhou X, Zhao C, Chen H, Zhao Y, Gong X (2011) Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia 82:805–810

    Article  CAS  PubMed  Google Scholar 

  • Friedman M (2007) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116–134

    Article  CAS  PubMed  Google Scholar 

  • Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM (2012) Influenza neuraminidase: a druggable target for natural products. Nat Prod Rep 29:11–36

    Article  CAS  PubMed  Google Scholar 

  • Gross G, Meyer K, Pres H, Thielert C, Tawfik H, Mescheder A (2007) A randomized, double-blind, four-arm parallel-group, placebo-controlled Phase II/III study to investigate the clinical efficacy of two galenic formulations of Polyphenon® E in the treatment of external genital warts. J Eur Acad Dermatol Venereol 21:1404–1412

    Article  CAS  PubMed  Google Scholar 

  • Guo J-P, Pang J, Wang X-W, Shen Z-Q, Jin M, Li J-W (2006) In vitro screening of traditionally used medicinal plants in China against enteroviruses. World J Gastroenterol 12:4078

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta M, Chakrabarti S, Bhattacharya S, Rath N (1997) Anti-epileptic and anti-cancer activity of some indigenous plants. Indian J Physiol Allied Sci 51:53–56

    Google Scholar 

  • Heneghan C, Onakpoya I, Jones MA, Doshi P, Del Mar C, Hama R, Thompson MJ, Spencer EA, Mahtani KR, Nunan D (2016) Neuraminidase inhibitors for influenza: a systematic review and meta-analysis of regulatory and mortality data. Science 5:666

    Google Scholar 

  • Imai M, Yamashita M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Kiso M, Murakami J, Yasuhara A, Takada K, Ito M, Nakajima N (2020) Influenza A variants with reduced susceptibility to baloxavir isolated from Japanese patients are fit and transmit through respiratory droplets. Nat Microbiol 5:27–33

    Article  CAS  PubMed  Google Scholar 

  • Kaplan W, Littlejohn TG (2001) Swiss-PDB viewer (deep view). Brief Bioinformatics 2:195–197

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Narayanan S, Chang K-O (2010) Inhibition of influenza virus replication by plant-derived isoquercetin. Antivir Res 88:227–235

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29:221–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. Science 2:556

    Google Scholar 

  • Lipinski CA (2004) Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Zhao J, Li W, Wang X, Xu J, Xie J, Tao K, Shen L, Zhang R (2015) Molecular docking of potential inhibitors for influenza H7N9. Comput Math Methods Med 2:888

    Google Scholar 

  • Liu J, Zu M, Chen K, Gao L, Min H, Zhuo W, Chen W, Liu A (2018) Screening of neuraminidase inhibitory activities of some medicinal plants traditionally used in Lingnan Chinese medicines. BMC Complem Altern Med 18:1–11

    Article  Google Scholar 

  • Manzocco L, Anese M, Nicoli MC (1998) Antioxidant properties of tea extracts as affected by processing. LWT Food Sci Technol 31:694–698

    Article  CAS  Google Scholar 

  • McCullers JA, Wang GC, He S, Webster RG (1999) Reassortment and insertion-deletion are strategies for the evolution of influenza B viruses in nature. J Virol 73:7343–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghadami M (2017) A narrative review of influenza: a seasonal and pandemic disease. Iran J Med Sci 42:2

    PubMed  PubMed Central  Google Scholar 

  • Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RPB, Aparna SR, Mangalapandi P, Samal A (2018) IMPPAT: a curated database of I ndian M edicinal P lants, P hytochemistry A nd T herapeutics. Sci Rep 8:1–17

    Article  CAS  Google Scholar 

  • Mukoyama A, Ushijima H, Nishimura S, Koike H, Toda M, Hara Y, Shimamura T (1991) Inhibition of rotavirus and enterovirus infections by tea extracts. Japan J Med Sci Biol 44:181–186

    Article  CAS  Google Scholar 

  • Naeem A, Elbakkouri K, Alfaiz A, Hamed ME, Alsaran H, AlOtaiby S, Enani M, Alosaimi B (2020) Antigenic drift of hemagglutinin and neuraminidase in seasonal H1N1 influenza viruses from Saudi Arabia in 2014 to 2015. J Med Virol 92:3016–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama M, Toda M, Okubo S, Shimamura T (1990) Inhibition of influenza virus infection by tea. Lett Appl Microbiol 11:38–40

    Article  Google Scholar 

  • Peteranderl C, Herold S, Schmoldt C (2016) Human influenza virus infections. In: Semin Respir Crit Care Med. Thieme Medical Publishers, pp 487–500

  • Pleschka S, Stein M, Schoop R, Hudson JB (2009) Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV). Virol J 6:1–9

    Article  Google Scholar 

  • Poonia AU (2015) Chenopodium album Linn: review of nutritive value and biological properties. J Food Sci Technol 52:3977–3985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulendran B, Maddur MS (2014) Innate immune sensing and response to influenza. Influenza Pathog Control II:23–71

    Google Scholar 

  • Rahman SR, Ahmed MF, Islam MA, Rahman MM (2016) Effect of risk factors on the prevalence of influenza infections among children of slums of Dhaka city. Springerplus 5:1–6

    Article  Google Scholar 

  • Rahman M, Hoque SA, Islam MA, Rahman SR (2017) Molecular analysis of amantadine-resistant influenza A (H1N1 pdm09) virus isolated from slum dwellers of Dhaka, Bangladesh. Virus Genes 53:377–385

    Article  CAS  PubMed  Google Scholar 

  • Rajão DS, Pérez DR (2018) Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol 9:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran D, Palombo EA, Chia Yeo T, Lim Siok Ley D, Lee TuC, Malherbe F, Grollo L (2013) Identification of traditional medicinal plant extracts with novel anti-influenza activity. PLoS ONE 8:e79293

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajeshwar Y, Gupta M, Mazumder UK (2005) In vitro lipid peroxidation and antimicrobial activity of Mucuna pruriens seeds. Science 5:7996

    Google Scholar 

  • Ren C-Z, Hu W-Y, Li J-C, Xie Y-H, Jia N-N, Shi J, Wei Y-Y, Hu T-J (2020) Ethyl acetate fraction of flavonoids from Polygonum hydropiper L. modulates pseudorabies virus-induced inflammation in RAW264. 7 cells via the NF-κB and MAPK pathways. J Vet Med Sci 2:20–263

    Google Scholar 

  • Sadati SM, Gheibi N, Ranjbar S, Hashemzadeh MS (2019) Docking study of flavonoid derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Biomed Rep 10:33–38

    CAS  PubMed  Google Scholar 

  • Sathiyanarayanan L, Arulmozhi S (2007) Mucuna pruriens Linn.-A comprehensive review. Pharmacogn Rev 1:6888

    Google Scholar 

  • Shivanika C, Kumar D, Ragunathan V, Tiwari P, Sumitha A (2020) Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J Biomol Struct 1:998

    Google Scholar 

  • Shoji M, Woo S-Y, Masuda A, Win NN, Ngwe H, Takahashi E, Kido H, Morita H, Ito T, Kuzuhara T (2017) Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar. BMC Complem Altern Med 17:1–7

    Article  Google Scholar 

  • Sivaraman D, Ratheeshkumar KS, Muralidaran P (2010) Effect of ethanolic seed extract of Mucuna pruriens (L.) DC var. utilis on haloperidol induced tardive dyskinesia in rats. Int J Pharm Sci Rev Res 3:6000

    Google Scholar 

  • Song J-M, Lee K-H, Seong B-L (2005) Antiviral effect of catechins in green tea on influenza virus. Antivir Res 68:66–74

    Article  CAS  PubMed  Google Scholar 

  • Tran TT, Kim M, Jang Y, Lee HW, Nguyen HT, Nguyen TN, Park HW, Le Dang Q, Kim J-C (2017) Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC Complem Altern Med 17:1–11

    Article  Google Scholar 

  • Yamayoshi S, Kawaoka Y (2019) Current and future influenza vaccines. Nat Med 25:212–220

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yu T, Jang H-J, Byeon SE, Song S-Y, Lee B-H, Rhee MH, Kim TW, Lee J, Hong S (2012) In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract. J Ethnopharmacol 139:616–625

    Article  PubMed  Google Scholar 

  • Zu M, Yang F, Zhou W, Liu A, Du G, Zheng L (2012) In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antivir Res 94:217–224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was funded by Ministry of Science and Technology, Government of the People’s Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabita Rezwana Rahman.

Ethics declarations

Ethical statement

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest

Md Abu Sayem Khan has no conflict of interest. Rifat Parveen has no conflict of interest. Sheikh Ariful Hoque has no conflict of interest. Md Firoz Ahmed has no conflict of interest. Abu Shara Shamsur Rouf has no conflict of interest. Sabita Rezwana Rahman has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.A.S., Parveen, R., Hoque, S.A. et al. Implementing in vitro and in silico approaches to evaluate anti-influenza virus activity of different Bangladeshi plant extracts. ADV TRADIT MED (ADTM) 23, 915–928 (2023). https://doi.org/10.1007/s13596-022-00669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13596-022-00669-9

Keywords

Navigation