Skip to main content

A search for potential anti-HIV phytoconstituents from the natural product repository

Abstract

A chronic, life threatening and immuno-suppressing malady caused by Human immunodeficiency virus (HIV) is formally known as Acquired Immune Deficiency Syndrome (AIDS). Currently, combinations of several anti-retroviral drugs are being used for the management of HIV infection. These drugs possess certain limitations and hence researchers across the globe are striving to explore treatment methodologies based on medicinal plants of natural origin in order to develop safe and effective treatment. In this review, various medicinal plants are categorized on the basis of target of action namely Reverse transcriptase enzyme, Protease enzyme, Integrase enzyme, cell fusion, CC chemokine receptor 5 (CCR5) CXC chemokine receptor 4 (CXCR4). Medicinal plants exhibiting multi-targeted activities against various targets of HIV are also reviewed. Detail description of medicinal plants with their habitat, common names, category of systems of medicines, phytoconstituents and their biological activities in terms of relative % inhibition or IC50 or EC50 are provided in this review. Anti-HIV benefits of these plants are observed due to phytoconstituents like terpenoids, tannins, alkaloids, polyphenols, coumarins, flavonoids, etc. In order to gain the structural knowledge for future developments of anti-HIV leads, ligand based pharmacophore was generated using phytoconstituents mentioned in this review. Structural modifications of these phytoconstituents on hydrophobic, donor and acceptor regions are beneficial for the potent anti-HIV activity. In conclusion, this study may prove to be a stepping stone towards the use of herbal medicinal plants for the management of HIV/AIDS and may aspire researchers to look for new treatment options from the natural sources.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

HIV:

Human immunodeficiency virus

AIDS:

Acquired immune deficiency syndrome

RT:

Reverse transcriptase

PR:

Protease

IN:

Integrase

CCR5:

CC chemokine receptor 5

CXCR4:

Chemokine receptor 4 (CXCR4)

% IR:

Relative percent inhibition

References

  • Ahn M-J, Kim CY, Lee JS et al (2002) Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med 68(5):457–459

    CAS  PubMed  Article  Google Scholar 

  • Al-Snafi AE (2015) The pharmacological importance of Ailanthus altissima-A review. Int J Pharm Rev Res 5(2):121–129

    Google Scholar 

  • Alasbahi RH, Melzig MF (2010a) Plectranthus barbatus: a review of phytochemistry, ethnobotanical uses and pharmacology–part 2. Planta Med 76(8):753–765

    CAS  PubMed  Article  Google Scholar 

  • Alasbahi RH, Melzig MF (2010b) Plectranthus barbatus: a review of phytochemistry, ethnobotanical uses and pharmacology–part 1. Planta Med 76(7):653–661

    CAS  PubMed  Article  Google Scholar 

  • Amalraj A, Gopi S (2017) Medicinal properties of Terminalia arjuna (Roxb.) Wight & Arn.: a review. J Tradit Complement Med (1): 65–78

  • Anjaneyulu ASR, Prasad AVR (1983) Structure of terminic acid, a dihydroxytriterpene carboxylic acid from Terminalia arjuna. Phytochemistry 22(4):993–998

    CAS  Article  Google Scholar 

  • Au TK, Lam TL, Ng TB et al (2001) A comparison of HIV-1 integrase inhibition by aqueous and methanol extracts of Chinese medicinal herbs. Life Sci 68(14):1687–1694

    CAS  PubMed  Article  Google Scholar 

  • Bartlett JA, Shao JF (2009) Successes, challenges, and limitations of current antiretroviral therapy in low-income and middle-income countries. Lancet Infect Dis 9(10):637–649

    PubMed  Article  Google Scholar 

  • Basavaraj KH, Navya MA, Rashmi R (2010) Quality of life in HIV/AIDS. Indian J Sex Transm Dis AIDS 31(2):75

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Behbahani M (2014) Evaluation of anti-HIV-1 activity of a new iridoid glycoside isolated from Avicenna marina, in vitro. Int Immunopharmacol 23(1):262–266

    CAS  PubMed  Article  Google Scholar 

  • Bhatt H, Patel P, Pannecouque C (2014a) Discovery of HIV-1 integrase inhibitors: pharmacophore mapping, virtual screening, molecular docking, synthesis, and biological evaluation. Chem Biol Drug Des 83(2):154–166

    CAS  PubMed  Article  Google Scholar 

  • Bodiwala HS, Sabde S, Mitra D, et al (2009) Anti-HIV Diterpenes from Coleus forskohlii. Nat Prod Commun 4(9): 1934578X0900400902

  • Boireau S, Maiuri P, Basyuk E et al (2007) The transcriptional cycle of HIV-1 in real-time and live cells. J Cell Biol 179(2):291–304

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Braca A, Sinisgalli C, De Leo M, et al (2018) Phytochemical profile, antioxidant and antidiabetic activities of Adansonia digitata L.(Baobab) from Mali, as a source of health-promoting compounds. Molecules 23(12): 3104

  • Brinkworth RI, Stoermer MJ, Fairlie DP (1992) Flavones are inhibitors of HIV-1 proteinase. Biochem Biophys Res Commun 188(2):631–637

    CAS  PubMed  Article  Google Scholar 

  • Bunluepuech K, Tewtrakul* S (2011) Anti-HIV-1 integrase activity of Thai medicinal plants in longevity preparations. Sonklanakarin J Sci Technol 33(6): 693

  • Cagigi A, Mowafi F, Phuong Dang LV et al (2008) Altered expression of the receptor-ligand pair CXCR5/CXCL13 in B cells during chronic HIV-1 infection. Blood 112(12):4401–4410

    CAS  PubMed  Article  Google Scholar 

  • de Castro S, Camarasa M-J (2018) Polypharmacology in HIV inhibition: can a drug with simultaneous action against two relevant targets be an alternative to combination therapy? Eur J Med Chem 150:206–227

    PubMed  Article  CAS  Google Scholar 

  • Chang Y, Woo E (2003) Korean medicinal plants inhibiting to Human Immunodeficiency Virus type 1 (HIV-1) fusion. Phyther Res an Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv 17(4):426–429

    Google Scholar 

  • Chang RS, Yeung HW (1988) Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antiviral Res 9(3):163–175

    CAS  PubMed  Article  Google Scholar 

  • Chaniad P, Wattanapiromsakul C, Pianwanit S, Tewtrakul S (2016) Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study. Pharm Biol 54(6):1077–1085

    CAS  PubMed  Article  Google Scholar 

  • Chinnaiyan SK, Subramanian MR, Kumar SV, et al (2013) Antimicrobial and anti-HIV activity of extracts of Canthium coromandelicum (Burm. f.) Alston leaves. J Pharm Res 7(7): 588–594

  • Cihlar T, Ray AS (2010) Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res 85(1):39–58

    CAS  PubMed  Article  Google Scholar 

  • Degroote S, Vogelaers D, Vandijck DM et al (2014) What determines health-related quality of life among people living with HIV: an updated review of the literature. Arch Public Heal 72:1–10

    Article  Google Scholar 

  • Dinda B, Das SK, Hajra AK, et al (2019) Chemical constituents of Plumbago indica roots and reactions of plumbagin: Part II

  • Dragic T, Litwin V, Allaway GP et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381(6584):667–673

    CAS  PubMed  Article  Google Scholar 

  • El-Mekkawy S, Meselhy MR, Kusumoto IT, et al (1995) Inhibitory effects of egyptian folk medicines oh human immunodeficiency virus (HIV) reverse transcriptase. Chem Pharm Bull 43(4):641–648

  • Esposito F, Mandrone M, Del Vecchio C, et al (2017) Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action. Pathog Dis 75(6): ftx065

  • Feng Y, Li X, Duan X, Wang B (2006) Iridoid glucosides and flavones from the aerial parts of Avicennia marina. Chem Biodivers 3(7):799–806

    CAS  PubMed  Article  Google Scholar 

  • Ganbold M, Barker J, Ma R et al (2010) Cytotoxicity and bioavailability studies on a decoction of Oldenlandia diffusa and its fractions separated by HPLC. J Ethnopharmacol 131(2):396–403

    CAS  PubMed  Article  Google Scholar 

  • Ghosh AK, Osswald HL, Prato G (2016) Recent progress in the development of HIV-1 protease inhibitors for the treatment of HIV/AIDS. J Med Chem 59(11):5172–5208

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Group W-H (2003) Preliminary development of the World Health Organsiation’s Quality of Life HIV instrument (WHOQOL-HIV): analysis of the pilot version. Soc Sci Med 57(7): 1259–1275

  • Gu X, Li Y, Mu J, Zhang Y (2013) Chemical constituents of Prunella vulgaris. J Environ Sci 25:S161–S163

    Article  Google Scholar 

  • Hamarsheh O (2020) HIV/AIDS in palestine: a growing concern. Int J Infect Dis 90:18–20

    PubMed  Article  Google Scholar 

  • Han L, Liu E, Kojo A, et al (2015) Qualitative and quantitative analysis of Eclipta prostrata L. by LC/MS. Sci World J

  • Haque N, Sofi G, Ali W et al (2015) A comprehensive review of phytochemical and pharmacological profile of Anar (Punica granatum Linn): a heaven’s fruit. J Ayurvedic Herb Med 1(1):22–26

    Article  Google Scholar 

  • Hegde S, Hegde HV, Jalalpure SS et al (2017) Resolving identification issues of Saraca asoca from its adulterant and commercial samples using phytochemical markers. Pharmacogn Mag 13:S266

    PubMed  PubMed Central  Article  Google Scholar 

  • Hoenigl M, Green N, Camacho M et al (2016) Signs or symptoms of acute HIV infection in a cohort undergoing community-based screening. Emerg Infect Dis 22(3):532

    PubMed  PubMed Central  Article  Google Scholar 

  • Honda T, Murae T, Tsuyuki T, et al (1976) Arjungenin, arjunglucoside I, and arjunglucoside II. A new triterpene and new triterpene glucosides from Terminalia arjuna. Bull Chem Soc Jpn 49(11): 3213–3218

  • Hong Z-L, Xiong J, Wu S-B et al (2013) Tetracyclic triterpenoids and terpenylated coumarins from the bark of Ailanthus altissima (“Tree of Heaven”). Phytochemistry 86:159–167

    CAS  PubMed  Article  Google Scholar 

  • https://indiabiodiversity.org/. Accessed on 21th April 2020

  • https://eol.org/. Accessed on 21th April 2020

  • https://aidsinfo.unaids.org/. Accessed on 12th March 2020.

  • Hussein G, Miyashiro H, Nakamura N et al (1999) Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease. Phyther Res an Int J Devoted to Pharmacol Toxicol Eval Nat Prod Deriv 13(1):31–36

    CAS  Google Scholar 

  • Kalinina OV, Pfeifer N, Lengauer T (2013) Modelling binding between CCR5 and CXCR4 receptors and their ligands suggests the surface electrostatic potential of the co-receptor to be a key player in the HIV-1 tropism. Retrovirology 10(1):1–11

    Article  CAS  Google Scholar 

  • Kapewangolo P, Hussein AA, Meyer D (2013) Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus. J Ethnopharmacol 149(1):184–190

    CAS  PubMed  Article  Google Scholar 

  • Kirchhoff F (2013) HIV life cycle: overview. Encyclopedia of AIDS, 1–9

  • Kojima H, Ogura H (1986) Triterpenoids from Prunella vulgaris. Phytochemistry 25(3):729–733

    CAS  Article  Google Scholar 

  • Kumbhar ST, Patil SP, Une HD (2018) Phytochemical analysis of Canna indica L. roots and rhizomes extract. Biochem Biophys Rep 16: 50–55

  • Kusumoto IT, Nakabayashi T, Kida H et al (1995) Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phyther Res 9(3):180–184

    CAS  Article  Google Scholar 

  • Lam TL, Lam ML, Au TK et al (2000) A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci 67(23):2889–2896

    CAS  PubMed  Article  Google Scholar 

  • Laure F, Raharivelomanana P, Butaud J-F et al (2008) Screening of anti-HIV-1 inophyllums by HPLC–DAD of Calophyllum inophyllum leaf extracts from French Polynesia Islands. Anal Chim Acta 624(1):147–153

    CAS  PubMed  Article  Google Scholar 

  • Lee-Huang S, Kung H, Huang PL et al (1991) A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett 291(1):139–144

    CAS  PubMed  Article  Google Scholar 

  • Levy JA, Mackewicz CE, Barker E (1996) Controlling HIV pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T cells. Immunol Today 17(5):217–224

    CAS  PubMed  Article  Google Scholar 

  • Li X-C, Liu C, Yang L-X, Chen R-Y (2011) Phenolic compounds from the aqueous extract of Acacia catechu. J Asian Nat Prod Res 13(9):826–830

    CAS  PubMed  Article  Google Scholar 

  • Li X, Wang H, Liu C, Chen R (2010) Chemical constituents of Acacia catechu. Zhongguo Zhong yao za zhi= Zhongguo zhongyao zazhi= China journal of Chinese materia medica 35(11): 1425–1427

  • Liang Z, He M, Fong W, et al (2008) A comparable, chemical and pharmacological analysis of the traditional Chinese medicinal herbs Oldenlandia diffusa and O. corymbosa and a new valuation of their biological potential. Phytomedicine 15(4): 259–267

  • Maartens G, Celum C, Lewin SR (2014) HIV infection: epidemiology, pathogenesis, treatment, and prevention. Lancet 384(9939):258–271

    PubMed  Article  Google Scholar 

  • Mahmood N, Piacente S, Pizza C et al (1996) The anti-HIV activity and mechanisms of action of pure compounds isolated fromRosa damascena. Biochem Biophys Res Commun 229(1):73–79

    CAS  PubMed  Article  Google Scholar 

  • Martins N, Petropoulos S, Ferreira ICFR (2016) Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: a review. Food Chem 211: 41–50

  • Matsuse IT, Lim YA, Hattori M, et al (1998) A search for anti-viral properties in Panamanian medicinal plants.: the effects on HIV and its essential enzymes. J Ethnopharmacol 64(1): 15–22

  • Modi M, Dezzutti CS, Kulshreshtha S et al (2013) Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat. Virol J 10(1):1–17

    Article  CAS  Google Scholar 

  • Moore RC, Fazeli PL, Jeste DV et al (2014) Successful cognitive aging and health-related quality of life in younger and older adults infected with HIV. AIDS Behav 18(6):1186–1197

    PubMed  PubMed Central  Article  Google Scholar 

  • Muanza DN, Euler KL, Williams L, Newman DJ (1995) Screening for antitumor and anti-HIV activities of nine medicinal plants from Zaire. Int J Pharmacogn 33(2):98–106

    CAS  Article  Google Scholar 

  • Nakane H, Arisawa M, Fujita A et al (1991) Inhibition of HIV-reverse transcriptase activity by some phloroglucinol derivatives. FEBS Lett 286(1–2):83–85

    CAS  PubMed  Article  Google Scholar 

  • Narayan C, Rai RV, Tewtrakul S (2011) A screening strategy for selection of anti-HIV-1 integrase and anti-HIV-1 protease inhibitors from extracts of Indian medicinal plants. Int J Phytomedicine 3(3):312

    Google Scholar 

  • Niranjan Reddy VL, Malla Reddy S, Ravikanth V et al (2005) A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Nat Prod Res 19(3):223–230

    Article  CAS  Google Scholar 

  • Oh C, Price J, Brindley MA et al (2011) Inhibition of HIV-1 infection by aqueous extracts of Prunella vulgaris L. Virol J 8(1):1–10

    PubMed  PubMed Central  Article  Google Scholar 

  • Ono K, Nakane H, Fukushima M et al (1990) Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases. Eur J Biochem 190(3):469–476

    CAS  PubMed  Article  Google Scholar 

  • Panthong P, Bunluepuech K, Boonnak N et al (2015) Anti-HIV-1 integrase activity and molecular docking of compounds from Albizia procera bark. Pharm Biol 53(12):1861–1866

    CAS  PubMed  Article  Google Scholar 

  • Patel PK, Bhatt HG (2020) Improved 3D-QSAR prediction by multiple-conformational alignments and molecular docking studies to design and discover HIV-I protease inhibitors. Curr HIV Res 19(2):154–171

    Article  Google Scholar 

  • Patel PK, Bhatt HG (2021) Improved 3D-QSAR prediction by multiple conformational alignments and molecular docking studies to design and discover HIV-I protease inhibitors. Curr HIV Res 19(2):154–171

    CAS  PubMed  Article  Google Scholar 

  • Patel SB, Patel BD, Pannecouque C, Bhatt HG (2016) Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur J Med Chem 117:230–240

    CAS  PubMed  Article  Google Scholar 

  • Patil AD, Freyer AJ, Eggleston DS et al (1993) The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree. Calophyllum Inophyllum Linn J Med Chem 36(26):4131–4138

    CAS  PubMed  Article  Google Scholar 

  • Patro SK, Sasmal D (2015) Invitro Antioxidant study and search for a novel bioactive compound from leave fractions of canthium coromandelicum (Burm. F.) Alston. Int J Pharm Sci Res 6(9): 3841

  • Pawar KD, Joshi SP, Bhide SR, Thengane SR (2007) Pattern of anti-HIV dipyranocoumarin expression in callus cultures of Calophyllum inophyllum Linn. J Biotechnol 130(4):346–353

    CAS  PubMed  Article  Google Scholar 

  • Pelay-Gimeno M, Glas A, Koch O, Grossmann TN (2015) Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew Chemie Int Ed 54(31):8896–8927

    CAS  Article  Google Scholar 

  • Pengsuparp T, Cai L, Constant H et al (1995) Mechanistic evaluation of new plant-derived compounds that inhibit HIV-1 reverse transcriptase. J Nat Prod 58(7):1024–1031

    CAS  PubMed  Article  Google Scholar 

  • Pironti A, Pfeifer N, Kaiser R et al (2014) Improved therapy-success prediction with GSS estimated from clinical HIV-1 sequences. J Int AIDS Soc 17:19743

    PubMed  PubMed Central  Article  Google Scholar 

  • Psotová J, Kolář M, Soušek J et al (2003) Biological activities of Prunella vulgaris extract. Phyther Res an Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 17(9):1082–1087

    Google Scholar 

  • Puripattanavong J, Tungcharoen P, Chaniad P et al (2016) Anti-HIV-1 integrase effect of compounds from Aglaia andamanica leaves and molecular docking study with acute toxicity test in mice. Pharm Biol 54(4):654–659

    CAS  PubMed  Article  Google Scholar 

  • Ranasinghe RA, Maduwanthi SD, Marapana RA (2019) Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): a review. Int J Food Sci 4327183

  • Rashid MA, Gustafson KR, Kashman Y et al (1995) Anti-HIV alkaloids from Toddalia asiatica. Nat Prod Lett 6(2):153–156

    CAS  Article  Google Scholar 

  • Rimando AM, Pezzuto JM, Farnsworth NR et al (1994) New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity. J Nat Prod 57(7):896–904

    CAS  PubMed  Article  Google Scholar 

  • Rodriguez-Penney AT, Iudicello JE, Riggs PK et al (2013) Co-morbidities in persons infected with HIV: increased burden with older age and negative effects on health-related quality of life. AIDS Patient Care STDS 27:5–16

    PubMed  PubMed Central  Article  Google Scholar 

  • Row LR, Murty PS, Rao GSRS, et al (1970) Chemical examination of Terminalia species. XII. Isolation & structure determination of arjunic acid, a new trihydroxytriterpene carboxylic acid from Terminalia arjuna bark. Indian J Chem 8: 716–721

  • Ryu SY, Lee C-K, Lee CO et al (1992) Antiviral triterpenes from Prunella vulgaris. Arch Pharm Res 15(3):242–245

    CAS  Article  Google Scholar 

  • Sabde S, Bodiwala HS, Karmase A et al (2011) Anti-HIV activity of Indian medicinal plants. J Nat Med 65(3–4):662–669

    PubMed  Article  Google Scholar 

  • Salehi B, Kumar NVA, Şener B et al (2018) Medicinal plants used in the treatment of human immunodeficiency virus. Int J Mol Sci 19(5):1459

    PubMed Central  Article  CAS  Google Scholar 

  • Scarlatti G, Tresoldi E, Björndal Å et al (1997) In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 3(11):1259–1265

    CAS  PubMed  Article  Google Scholar 

  • Senapati SK, Das GK, Aparajita S, Rout GR (2012) Assessment of genetic variability in the Asoka tree of India. Biodiversity 13(1):16–23

    Article  Google Scholar 

  • Sharma A, Rangari V (2016) HIV-1 reverse transcriptase and protease assay of methanolic extracts of Adansonia digitata L. Int J Pharm Pharm Sci 8:124–127

    CAS  Article  Google Scholar 

  • Shirolkar A, Gahlaut A, Chhillar AK, Dabur R (2013) Quantitative analysis of catechins in Saraca asoca and correlation with antimicrobial activity. J Pharm Anal 3(6):421–428

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Silprasit K, Seetaha S, Pongsanarakul P et al (2011) Anti-HIV-1 reverse transcriptase activities of hexane extracts from some Asian medicinal plants. J Med Plants Res 5(19):4899–4906

    Google Scholar 

  • Simon V, Ho DD, Karim QA (2006) HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. Lancet 368(9534):489–504

    PubMed  PubMed Central  Article  Google Scholar 

  • Singh B, Singh VP, Pandey VB, Rücker G (1995) A new triterpene glycoside from Terminalia arjuna. Planta Med 61(6):576–577

    CAS  PubMed  Article  Google Scholar 

  • Singh DV, Verma RK, Gupta MM, Kumar S (2002a) Quantitative determination of oleane derivatives in Terminalia arjuna by high performance thin layer chromatography. Phytochem Anal an Int J Plant Chem Biochem Tech 13(4):207–210

    CAS  Article  Google Scholar 

  • Singh DV, Verma RK, Singh SC, Gupta MM (2002b) RP-LC determination of oleane derivatives in Terminalia arjuna. J Pharm Biomed Anal 28(3–4):447–452

    CAS  PubMed  Article  Google Scholar 

  • Srivastava GN, Bagchi GD, Srivastava AK (1988) Pharmacognosy of Ashoka stem bark and its adulterants. Int J Crude Drug Res 26(2):65–72

    Article  Google Scholar 

  • Suchitra M, Cheriyan BV (2018) Vitex trifolia: an ethnobotanical and pharmacological review. Asian J Pharm Clin Res 11(4):12–14

    CAS  Google Scholar 

  • Tabba HD, Chang RS, Smith KM (1989) Isolation, purification, and partial characterization of prunellin, an anti-HIV component from aqueous extracts of Prunella vulgaris. Antiviral Res 11(5–6):263–273

    CAS  PubMed  Article  Google Scholar 

  • Tandon N, Yadav SS (2017) Contributions of Indian Council of Medical Research (ICMR) in the area of Medicinal plants/Traditional medicine. J Ethnopharmacol 197:39–45

    PubMed  Article  Google Scholar 

  • Tewtrakul S, Subhadhirasakul S, Cheenpracha S, Karalai C (2007) HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata. Phyther Res an Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv 21(11):1092–1095

    CAS  Google Scholar 

  • Tewtrakul S, Subhadhirasakul S, Kummee S (2006) Anti-HIV-1 integrase activity of medicinal plants used as self medication by AIDS patients. Songklanakarin J Sci Technol 28(4):785–790

    Google Scholar 

  • Tobyn G, Denham A, Whitelegg M (2016) The Western herbal tradition: 2000 years of medicinal plant knowledge. Singing Dragon

  • Vernekar SKV, Liu Z, Nagy E et al (2015) Design, synthesis, biochemical, and antiviral evaluations of C6 benzyl and C6 biarylmethyl substituted 2-hydroxylisoquinoline-1, 3-diones: dual inhibition against HIV reverse transcriptase-associated RNase H and polymerase with antiviral activities. J Med Chem 58(2):651–664

    CAS  PubMed  Article  Google Scholar 

  • Wang W, Ali Z, Shen Y et al (2010) Ursane triterpenoids from the bark of Terminalia arjuna. Fitoterapia 81(6):480–484

    CAS  PubMed  Article  Google Scholar 

  • Wang J-N, Hou C-Y, Liu Y-L et al (1994) Swertifrancheside, an HIV-reverse transcriptase inhibitor and the first flavone-xanthone dimer, from Swertia franchetiana. J Nat Prod 57(2):211–217

    CAS  PubMed  Article  Google Scholar 

  • Wang CF, Li JP, Zhang YB, Zhang ZZ (2011) Chemical constituents from the roots of Senecio scandens. Chem Nat Compd 47(2):243–245

    CAS  Article  Google Scholar 

  • Wilen CB, Tilton JC, Doms RW (2012) HIV: cell binding and entry. Cold Spring Harb Perspect Med 2(8):a006866

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Woradulayapinij W, Soonthornchareonnon N, Wiwat C (2005) In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J Ethnopharmacol 101(1–3): 84–89

  • Xu H, Wan M, Loh B et al (1996) Screening of traditional medicines for their inhibitory activity against HIV-1 protease. Phyther Res 10:207–210

    Article  Google Scholar 

  • Xu Z, Zhao S-J, Lv Z-S et al (2019) Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 162:396–406

    CAS  PubMed  Article  Google Scholar 

  • Yadav M, Sehrawat A, Kumar D, Bhidhasra A (2017) Therapeutic plants and phytoconstituents as natural anti-HIV agents: a review. Inven Rapid Planta Act 2017:1–5

    Google Scholar 

  • Yao X-J, Wainberg MA, Parniak MA (1992) Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris. Virology 187(1):56–62

    CAS  PubMed  Article  Google Scholar 

  • Zaitseva E, Zaitsev E, Melikov K et al (2017) Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22(1):99–110

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors PKP and HGB are thankful to Nirma University, Ahmedabad, India for providing necessary facilities to carry out the work, which is a part of Doctor of Philosophy (Ph.D.) research work of Mr. Paresh Patel, to be submitted to Nirma University, Ahmedabad, India. The authors DVP, SRS and PKP are also thankful to L. J. Institute of Pharmacy, L J University, Ahmedabad, India for providing necessary support.

Funding

No funding source has been utilized in this work.

Author information

Authors and Affiliations

Authors

Contributions

DVP, SRS and PKP carried out literature search, compilation of data and preparation of manuscript. HGB & PKP supervised the work and revised the manuscript.

Corresponding author

Correspondence to Paresh K. Patel.

Ethics declarations

Ethical statement

This article does not contain any studies involving animals performed by any of the authors. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest

Dharmraj V. Pathak has no conflict of interest. Sneha R. Sagar has no conflict of interest. Hardik G. Bhatt has no conflict of interest. Paresh K. Patel has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pathak, D.V., Sagar, S.R., Bhatt, H.G. et al. A search for potential anti-HIV phytoconstituents from the natural product repository. ADV TRADIT MED (ADTM) (2022). https://doi.org/10.1007/s13596-022-00646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13596-022-00646-2

Keywords

  • HIV
  • AIDS
  • Phytoconstituents
  • Reverse transcriptase
  • Protease
  • Integrase
  • Chemokines