Antimalarial activity and biochemical effects of saponin-rich extract of Dianthus basuticus Burtt Davy in Plasmodium berghei-infected mice

Abstract

Saponin extract from Dianthus basuticus (SEDB), was investigated for its anti-malarial activity and biochemical effects in Plasmodium berghei-infected mice. Thirty mice were divided into six groups of five mice each. The mice in group I (control) were uninfected, while those of groups II–VI were infected intraperitoneally with standard (2 × 107) inoculum of chloroquine sensitive Plasmodium berghei (NK65) parasite. Mice in groups I (control) and II (P. berghei-infected) received 0.5 ml of distilled water orally, while those of groups III–VI were treated orally with 5 mg/kg body weight (b.w) chloroquine and 50, 100 and 150 mg/kg b.w of SEDB respectively for four days following the establishment of parasitaemia. Rectal temperature, body weight, percentage parasitaemia, chemosuppression of parasite multiplication, haematological and biochemical parameters were determined. SEBD at 50, 100 and 150 mg/kg b.w significantly (p  < 0.05) decreased percentage parasitaemia, rectal temperature and increased (p < 0.05) significantly body weight of the animals, and as well suppressed parasite growth and multiplication particularly at 150 mg/kg. SEDB at all doses restored altered haematological parameters, distortions of the liver and kidney functional indices to normal and increased (p < 0.05) significantly the enzymatic antioxidant defence mechanism. FT-IR analysis of the saponin revealed the existence of aromatic compounds, alcohols, phenols alkyl groups, alkanes, carbonyl compounds and nitro groups. Saponin extract from Dianthus basuticus suppressed malarial parasite by modulation of oxidative stress via fortification of antioxidant defence mechanism and thus suggested it as source of promising alternative antimalarial.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

Data presented are mainly results obtained from the study and has not been submitted or published elsewhere for publication.

References

  1. Abdulelah HAA, Zainal-Abidin BAH (2007) In vivo antimalaria tests of Nigella sativa (Black Seed) different extracts. Am J Pharmacol Toxicol 2(2):46–50

    Article  Google Scholar 

  2. Addae-Mensah I, Fakorede F, Holtel A, Nwaka S (2011) Traditional medicines as a mechanism for driving research innovation in Africa. Malarial J 10(Suppl 1):S9

    Article  Google Scholar 

  3. Adebayo JO, Yakubu MT, Egwin CE, Owoyele BV, Enaibe BU (2003) Effect of ethanolic extract of Khaya senegalensis on some biochemical parameters of rat kidney. J Ethnopharmacol 88:69–72

    PubMed  Article  Google Scholar 

  4. Aebi H (1984) Catalase in vitr. Methods Enzyme 105:121–126

    CAS  Article  Google Scholar 

  5. Afolabi OM, Salako LA, Mafe AG (1996) Symptomatology of clinical malaria in the first 6 months of life in urban Nigeria. In: Abstracts of a two-day national symposium on malaria in Nigeria, Nigeria Institute of Medical Research Yaba, 13–15

  6. Akanbi OM, Elekofehinti O, Olatokunbo A, Adejuyigbe A, Jegede A (2018) Anti-malarial activity of total saponins from Terminalia avicennioides and its effect on liver and haematological of infected mice. Drug Des 7:161. https://doi.org/10.4172/2169-0138.1000161

    Article  Google Scholar 

  7. Akinleye OT (2009) Home management of malaria in children under five year. M.Sc. Dissertation, University of Lagos, Akoka, Nigeria; 5(3): 25–29

  8. Amoa Onguéné P, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Mbaze LM et al (2013) The potential of anti-malarial compounds derived from African medicinal plants. Part I: a pharmacological evaluation of alkaloids and terpenoids. Malarial J 12:449. https://doi.org/10.1186/1475-2875-12-449

    CAS  Article  Google Scholar 

  9. Anandan R, DeepaRekha R, Devaki T (1999) Protective effect of Picrorhizakurroa on mitochondrial glutathione antioxidant system in D-galactosamine-induced hepatitis in rats. Curr Sci 76(12):1543–1545

    Google Scholar 

  10. Aremu AO, Finnie JF, Van Staden J (2012) Potential of South African medicinal plants used as anthelmintics—their efficacy, safety concerns and reappraisal of current screening methods. S Afr J Bot 82:134–150

    Article  Google Scholar 

  11. Balogun EA, Adebayo JO, Zailani AH, Kolawole OM, Ademowo OG (2009) Activity of ethanolic extract of Clerodendrum violaceum leaves against Plasmodium berghei in mice. Agric Biol J N Am 1(3):307–312

    Article  Google Scholar 

  12. Basco LK, Mitaku S, Skaltsounis AL, Ravelomanantsoa N, Tillequin F, Koch M et al (1994) In vitro activities of furoquinoline and acridone alkaloids against Plasmodium falciparum. Antimicrob Agents Chemother 38(5):1169–1171

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Basir R, Rahiman SF, Hasballah K, Chong W, Talib H, Yam M et al (2012) Plasmodium berghei ANKA infection in ICR mice as a model of cerebral malaria. Iran J Parasitol 7(4):62

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chin YW, Halunas MJ, Chai HB, Kinghorn AD (2006) Drug discovery from natural sources. AAPS J 8:E239–E253

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Choudhary A, Mittal AK, Radhika M, Tripathy D, Chatterjee A, Banerjee UC, Singh IP (2013) Two new stereoisomeric antioxidant triterpenes from Potentilla fulgens. Fitoterapia 91:290–297. https://doi.org/10.1016/j.fitote.2013.09.008

    CAS  Article  PubMed  Google Scholar 

  16. Claire L, Mackintosh JG, Beeson KM (2004) Clinical features and pathogenesis of severe malaria. Trends Parasitol 20(12):597–603

    Article  CAS  Google Scholar 

  17. Coker HAB, Chukwuanim CM, Ifudu ND, Aina BA (2015) The malaria scourge. Concepts in disease management. Nigerian J Pharmacol 32:19–47

    Google Scholar 

  18. Das BS, Thurnham DJ, Das DB (1997) Influence of malaria on markers of iron status in children: implications for interpreting iron status in malaria-endemic communities. Br J Nutr 78:751–760

    CAS  PubMed  Article  Google Scholar 

  19. Dascombe M, Sidara J (1994) The absence of fever in rat malaria is associated with increased turnover of 5-hydroxytryptamine in the brain. Temp Reg Springer 47–52

  20. David AF, Philip JR, Simon LC, Reto B, Solomon N (2004) Antimalaria drug discovery: efficacy models for compound screening. Nat Rev 3:509–520

    Google Scholar 

  21. Devasagayam TP, Tarachand U (1987) Decreased lipid peroxidation in the rat kidney during gestation. Biochem Biophys Res Commun 145:134–138

    CAS  PubMed  Article  Google Scholar 

  22. Dhariyal KK, Farooq U, Singh S, Shariq M, Kaur N, Bharti AK (2016) Malaria positive cases with reference to liver function test among patients attending in teerthankermahaveer medical college and research centre, Moradabad, Uttar Pradesh. India Int J Sci 3(12):62–66

    Google Scholar 

  23. Dikasso D, Makonnen E, Debella A, Abebe D, Urga K, Makonnen W et al (2006) In vivo anti-malarial activity of hydroalcoholic extracts from Asparagus africanus Lam. In mice infected with Plasmodium berghei. Ethiop J Health Dev 20:112–118

    Google Scholar 

  24. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  Article  Google Scholar 

  25. Elufioye TO, Agbedahunsi JM (2004) Antimalarial activities of T.divesifolia (Asteraceae) on mice in vivo. J Ethnopharmacol 93:167–171

    CAS  PubMed  Article  Google Scholar 

  26. Eritsland J (2000) Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr 71(1):197S-201S

    CAS  PubMed  Article  Google Scholar 

  27. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(1):69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gornall AG, Bardawill JC, David MM (1949) Determination of serum proteins by means of biuret reaction. J Biol 177:751–760

    CAS  Google Scholar 

  29. Grant D, Long WF, Williamson FB (1987) Infrared spectroscopy of heparin-complexes. Biochem J 244:143–149

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Hassanalilou T, Payahoo L, Shahabi P, Abbasi MM, Jafar-abadi MA, Bishak YK et al (2017) The protective effects of Morusnigra L. leaves on the kidney function tests and kidney and liver histological structures in streptozotocin-induced diabetic rats. Biomed Res 281(14):6113–6118

    Google Scholar 

  31. Hoareau L, DaSilva EJ (1999) Medicinal plants: a re-emerging health aid. Electron J Biotechnol 2(2):56–69

    Google Scholar 

  32. Jyothi KS, Seshagari M (2012) In-vitro activity of saponins of Bauhinia Purpurea, Madhuca longifolia, Celastus paniculatus and Semecarpus anacardium on selected oral pathogens. J Dent (Tehran) 9:216–223

    CAS  Google Scholar 

  33. Karunamoorthi K (2012) Global malaria burden: socialomics implications. J Socialomics. https://doi.org/10.4172/jsc.1000e108

    Article  Google Scholar 

  34. Lakshmi V, Mahdi AA, Agarwal SK, Khanna AK (2012) Sterodal saponin of Chlorophytum nimonii (Grah) with lipid lowering and antioxidant activity. Chron Young Sci 3:227–232

    CAS  Article  Google Scholar 

  35. Lamikanra AA, Theron M, Kooij TWA, Roberts DJ (2009) Hemozoin (malarial pigment) directly promotes apoptosis of erythroid precursors. PLoS ONE 4(12):e8446. https://doi.org/10.1371/journal.pone.0008446

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Lamula SQN, Ashafa AOT (2014) Antimicrobial and cytotoxic potential of Dianthus basuticus used in Basotho traditional practice. Bangladesh J Pharmacol 9(1):105–111

    Article  Google Scholar 

  37. Lorke D (1983) A new approach to practical acute toxicity testing. Ach Toxicol 4:275–287

    Article  Google Scholar 

  38. Maegraith B (1981) Aspects of the pathogenesis of malaria. Southeast Asian J Trop Med Public Health 12:251–267

    Google Scholar 

  39. Marklund S, Marklund G (1974) Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Misganaw D, Engidawork E, Nedi T (2019) Evaluation of the anti-malarial activity of crude extract and solvent fractions of the leaves of Olea europaea (Oleaceae) in mice. BMC Complem Altern Med 19:171. https://doi.org/10.1186/s12906-019-2567-8

    CAS  Article  Google Scholar 

  41. Nafiu MO, Tom Ashafa AO (2017) Antioxidant and inhibitory effects of saponin extracts from Dianthus basuticus Burtt Davy on key enzymes implicated in type 2 diabetes In vitro. Pharmacogn Mag 13:576–582

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Nafiu MO, Ashafa AOT, Sabiu S (2018) Anti-nephrolithiatic potential and the protective role of saponin-rich extract of Dianthus basuticus against acetaminophen-induced damage in HEK293 cells. IJNPR 9(2):117–125

    CAS  Google Scholar 

  43. National Academy of Sciences (2011) Guide laboratory animals for the care and use of laboratory animals eighth edition Washington, DC 20055

  44. National Research Council (NRC) (2006) Toxicity testing for assessing environmental agents, interim Report. National Academies Press, Washington DC, USA

  45. Organization for Economic Co-operation and Development (OECD) 2006 Acute Oral Toxicity (OECD Test Guideline 425) http://www.oecd-ilibrary.org/environment/test-no-425-acute-oral-toxicity-up-and-down-procedure_9789264071049-en

  46. Peter IT, Anatoli VK (2006) The current global malaria situation. Malaria parasite biology, pathogenesis and protection. ASM press. W.D.C, pp 11–22

  47. Plummer DT, Wilkinson JH (1963) Organ specificity and lactate-dehydrogenase activity. Some properties of human-heart and liver preparations. Biochem J 87:423

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Raimondo D, Von SL, Foden W, Victor JE, Helme NA, Turner RC et al (2009) Strelitzia. Red list S Afr Plants 25:668

    Google Scholar 

  49. Ralf RS (2007) Malarial fever: hemozoin is involved but toll-free. PNAS 104(6):1743–1744

    Article  CAS  Google Scholar 

  50. Ríos J (2010) Effects of triterpenes on the immune system. J Ethnopharmacol 128:1–14

    PubMed  Article  CAS  Google Scholar 

  51. Sabiu S, Sunmonu TO, Ajani EO, Ajiboye TO (2015) Combined administration of silymarin and vitamin C stalls acetaminophen-mediated hepatic oxidative insults in Wistar rats. Rev Bras Farmacogn 25:29–34

    CAS  Article  Google Scholar 

  52. Schmidt E, Schmidt FW (1963) Determination of serum GOT and GPT. Enzymol and Biol 3:1

    Article  Google Scholar 

  53. Shittu OK, Olayemi IK, Omalu ICI, Adeniyi AK (2013) Antiplasmodial properties of methanolic extract of Musca Domestica Maggot On P. berghei-infected mice. IJBPAS 2(5):1064–1070

    Google Scholar 

  54. Sofowora A (1993) Medicinal plants and traditional medicine in Africa Spectrum books Limited, Ibadan, Nigeria, (2nd edn) pp 134–156

  55. Srabasti J, Chakravorty KR, Hughes A, Craig G (2008) Host response to cytoadherence in Plasmodium falciparum. Biochem Soc Trans 36:221–228. https://doi.org/10.1042/BST0360221

    CAS  Article  Google Scholar 

  56. Taherkhani M, Rustaiyan A, Nahrevanian H, Naeimi S, Taherkhani T (2013) Comparison of antimalarial activity of Artemisia turanica extract with current drugs in vivo. J Vector Borne Dis 50:51–56

    PubMed  Google Scholar 

  57. Tropical Disease Research. Malaria Home Management (2000) UNDP/Word/WHO/UMP

  58. Ukpanukpon RU, Bassey SO, Edoamodu CE, Ugor JA, Omang WA, Odutuga AA (2018) Haematological effect of ethanolic leaves extract of Jatropha curcas on Plasmodium Berghei Infected Mice. Pharm Chem J 5(1):77–83

    Google Scholar 

  59. Ukwuani AN, Abubakar MG, Hassan SW, Agaie BM (2012) Toxicological studies of hydromethanolic leaves extract of Grewia crenata. Int J Pharm 4:245–249

    Google Scholar 

  60. Willianson EM, Okpako DT, Evans FJ (1996) Selection Preparation and Pharmacological Evaluation of Plant Material. John Wiley, London

    Google Scholar 

  61. World Health Organization (2011) The Top 10 Causes of Death. Fact sheet 310

  62. World Health Organization (2016) The Word Malaria Report From WHO and UNICEF World Health Organization, Geneva, Switzerland

  63. World malaria report (2019) Malaria https://www.who.int/newsroom/factsheets/detail/malaria

  64. Wright PJ, Leathwood PD, Plummer DT (1972) Enzymes in rat urine. Alkaline phosphate Enzymologia 42:317–327

    CAS  Google Scholar 

  65. Yakubu MT, Akanji MA, Oladiji AT (2007) Hematological evaluation in male albino rats following chronic administration of aqueous extract of Fadogia agrestis stem. Pharmacogny Mag 3(9):34

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Biochemistry, University of Ilorin, Ilorin, Nigeria for providing enabling environment necessary to pursue the research work.

Funding

This study has no funding.

Author information

Affiliations

Authors

Contributions

MON: designed and supervised the work and did the final editing of the manuscript and AIA performed the study and prepared the manuscript. TAA participated in the bench work and corrected the initial draft of the manuscript. AOTA provided the plant material.

Corresponding author

Correspondence to Taoheed Adedeji Abdulsalam.

Ethics declarations

Ethical Statement

The research was carried out after ethical approval from the Departmental Ethical Committee on the Care and Use of Experimental Animals of the Department of Biochemistry, University of Ilorin, Ilorin, Nigeria, with Approval Number BCH/UIL/15/2019 dated 12th October, 2017.

Conflict of interest

Mikhail Olugbemiro Nafiu has no conflict of interest. Adeyinka Ismaila Adewuyi has no conflict of interest. Taoheed Adedeji Abdulsalam has no conflict of interest. Anofi Omotayo Tom Ashafa has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nafiu, M.O., Adewuyi, A.I., Abdulsalam, T.A. et al. Antimalarial activity and biochemical effects of saponin-rich extract of Dianthus basuticus Burtt Davy in Plasmodium berghei-infected mice. ADV TRADIT MED (ADTM) (2021). https://doi.org/10.1007/s13596-021-00571-w

Download citation

Keywords

  • Dianthus basuticus
  • Saponin
  • Antimalarial activity
  • Biochemical effects
  • Antioxidant properties